Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance after seizures. These results demonstrate that the efficiency of microglial phagocytosis critically affects the dynamics of apoptosis and urge to routinely assess the microglial phagocytic efficiency in neurodegenerative disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4881984PMC
http://dx.doi.org/10.1371/journal.pbio.1002466DOI Listing

Publication Analysis

Top Keywords

atp microgradients
8
receptor expression
8
diseased brain
8
neurogenic niche
8
newborn cells
8
phagocytic efficiency
8
microglial
6
phagocytosis
5
neuronal hyperactivity
4
hyperactivity disturbs
4

Similar Publications

Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response.

View Article and Find Full Text PDF

We demonstrate a concept for how a miniaturized 3-D cell culture in biological extracellular matrix (ECM) or synthetic gels bridges the gap between organ-tissue culture and traditional 2-D cultures. A microfluidic device for 3-D cell culture including microgradient environments has been designed, fabricated, and successfully evaluated. In the presented system stable diffusion gradients can be generated by application of two parallel fluid flows with different composition against opposite sides of a gel plug with embedded cells.

View Article and Find Full Text PDF

Adenylate levels in chloroplasts, mitochondria and the cytosol of oat mesophyll protoplasts were determined under light and dark conditions, in the absence and presence of plasmalemma-permeable inhibitors of electron transfer and uncouplers of phosphorylation. This was achieved using a microgradient technique which allowed an integrated homogenization and fractionation of protoplasts within 60 s (Hampp et al. 1982, Plant Physiol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!