Human Mn-containing superoxide dismutase (hMnSOD) is a mitochondrial enzyme that metabolizes superoxide radical (O2(•-)). O2(•-) reacts at diffusional rates with nitric oxide to yield a potent nitrating species, peroxynitrite anion (ONOO(-)). MnSOD is nitrated and inactivated in vivo, with active site Tyr34 as the key oxidatively modified residue. We previously reported a k of ∼1.0 × 10(5) M(-1) s(-1) for the reaction of hMnSOD with ONOO(-) by direct stopped-flow spectroscopy and the critical role of Mn in the nitration process. In this study, we further established the mechanism of the reaction of hMnSOD with ONOO(-), including the necessary re-examination of the second-order rate constant by an independent method and the delineation of the microscopic steps that lead to the regio-specific nitration of Tyr34. The redetermination of k was performed by competition kinetics utilizing coumarin boronic acid, which reacts with ONOO(-) at a rate of ∼1 × 10(6) M(-1) s(-1) to yield the fluorescence product, 7-hydroxycoumarin. Time-resolved fluorescence studies in the presence of increasing concentrations of hMnSOD provided a k of ∼1.0 × 10(5) M(-1) s(-1), fully consistent with the direct method. Proteomic analysis indicated that ONOO(-), but not other nitrating agents, mediates the selective modification of active site Tyr34. Hybrid quantum-classical (quantum mechanics/molecular mechanics) simulations supported a series of steps that involve the initial reaction of ONOO(-) with Mn(III) to yield Mn(IV) and intermediates that ultimately culminate in 3-nitroTyr34. The data reported herein provide a kinetic and mechanistic basis for rationalizing how MnSOD constitutes an intramitochondrial target for ONOO(-) and the microscopic events, with atomic level resolution, that lead to selective and efficient nitration of critical Tyr34.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.6b00045 | DOI Listing |
Foods
January 2025
College of Food Science and Engineering, Guiyang University, Guiyang 550005, China.
Suitable planting systems are critical for the physicochemical and bioactivities of strawberry ( Duch.) polysaccharides (SPs). In this study, SPs were prepared through hot water extraction, and the differences in physicochemical characteristics and bioactivities between SPs derived from elevated matrix soilless planting strawberries (EP-SP) and those from and conventional soil planting strawberries (GP-SP) were investigated.
View Article and Find Full Text PDFFood Chem
January 2025
School of Food Science and Engineering, Yangzhou University, Jiangsu 225127, China. Electronic address:
The broad application of starch films has been significantly limited by their insufficient hydrophobicity and antibacterial activity. To overcome these challenges, this study developed a new starch film by incorporating polyvinyl alcohol (PVA) and chlorogenic acid. The study explored the impact of PVA polymerization on the physical and functional characteristics of the resulting films, with particular emphasis on enhancing antimicrobial functionality by incorporating chlorogenic acid.
View Article and Find Full Text PDFGels
January 2025
Fisheries Department, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar 9971778631, Iran.
The properties of biopolymer films prepared using Southern meagre fish () skin gelatin blends, both with and without clove bud extract (CE) at concentrations of 0.3% and 0.7%, were investigated.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China. Electronic address:
The advancement of active packaging for food conservation has attracted considerable interest over time. In the present study, we aims to create and examine active films composed of chitosan (CS), poly(vinyl alcohol) (PVA), and syzygium guineense plant extract (SYZ) for potential use in food preservation. We examined the impact of ethanol extracts from the SYZ plant on the films' tensile strength, physical, antibacterial, and anti-oxidant properties.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Riphah International University, Islamabad 44000, Pakistan.
Halide perovskites are a class of materials with excellent potential for solar cell applications due to their excellent optical and electronic properties. In this study, strain-dependent physical properties of SrNBr perovskites are investigated and theoretical results are reported here. The structural properties indicate that SrNBr has a cubic structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!