Winter is coming. Some animals successfully cope with the hostility of this season by hibernating. But how do hibernators survive the procoagulant state of months of immobility at very low body temperatures, with strongly decreased blood flow and increased blood viscosity? Changing the coagulation system seems crucial for preventing thromboembolic complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4843874PMC
http://dx.doi.org/10.4161/23328940.2014.967595DOI Listing

Publication Analysis

Top Keywords

hibernation hypothermia
4
hypothermia help
4
help improve
4
improve anticoagulant
4
anticoagulant control
4
control winter
4
winter coming
4
coming animals
4
animals cope
4
cope hostility
4

Similar Publications

Identification of hypothermia-inducing neurons in the preoptic area and activation of them by isoflurane anesthesia and central injection of adenosine.

J Physiol Sci

January 2025

Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, 890-8544, Kagoshima, Japan. Electronic address:

Hibernation and torpor are not passive responses caused by external temperature drops and fasting but are active brain functions that lower body temperature. A population of neurons in the preoptic area was recently identified as such active torpor-regulating neurons. We hypothesized that the other hypothermia-inducing maneuvers would also activate these neurons.

View Article and Find Full Text PDF
Article Synopsis
  • Hibernating animals can significantly lower their body temperature without damaging their organs, potentially due to active hypometabolism.
  • Researchers studied the phosphorylation of Akt to see if metabolism decreases during artificial hypothermia in hamsters.
  • They found that while hypothermia through adenosine A1 receptor activation decreased Akt phosphorylation significantly, anesthesia-induced hypothermia showed only partial reduction without organ damage, indicating both methods allow for regulated metabolic reduction.
View Article and Find Full Text PDF

Torpor is a state used by several mammals to survive harsh winters and avoid predation, characterized by a drastic reduction in metabolic rate followed by a decrease in body temperature, heart rate, and many physiological variables. During torpor, all organs and systems must adapt to the new low-energy expenditure conditions to preserve physiological homeostasis. These adaptations may be exploited in a translational perspective in several fields.

View Article and Find Full Text PDF

Inhibition of the hypothalamic ventromedial periventricular area activates a dynorphin pathway-dependent thermoregulatory inversion in rats.

Curr Biol

January 2025

Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA; Department of Biomedical and Neuromotor Science, University of Bologna, Bologna 40126, Italy. Electronic address:

To maintain core body temperature in mammals, CNS thermoregulatory networks respond to cold exposure by increasing brown adipose tissue and shivering thermogenesis. However, in hibernation or torpor, this canonical thermoregulatory response is replaced by a new, emerging paradigm, thermoregulatory inversion (TI), an alternative homeostatic state in which cold exposure inhibits thermogenesis and warm exposure stimulates thermogenesis. Here, we demonstrate that in the non-torpid rat, either exclusion of the canonical thermoregulatory integrator in the preoptic hypothalamus or inhibition of neurons in the ventromedial periventricular area (VMPeA) induces the TI state through an alternative thermoregulatory pathway.

View Article and Find Full Text PDF

The Art of Chilling Out: How Neurons Regulate Torpor.

Bioessays

February 2025

Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, Okazaki, Japan.

Article Synopsis
  • * In cold conditions with limited food, some of these animals enter a state called torpor, where they lower their body temperature and metabolic activity to save energy.
  • * Research is ongoing to uncover the neuronal mechanisms behind torpor, particularly in mice, with recent studies highlighting progress and outlining unresolved questions and potential future research directions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!