Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4892271 | PMC |
http://dx.doi.org/10.1098/rsif.2016.0349 | DOI Listing |
J Environ Radioact
January 2025
Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, 920-1192, Kanazawa, Ishikawa, Japan.
Radionuclides, including I, were released into the atmosphere by the Fukushima nuclear power plant accident. We measured the dissolved I concentration in 11 rivers in eastern Fukushima from 2016 to 2020 to clarify the I concentration level in river water under base-flow conditions. During the study period, the maximum I concentration in the river water was 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.
High-energy electron beam exposure is generally recognized as the standard for achieving high-precision nanofabrication. Low-energy electron beam exposure techniques offer advantages in 3D manufacturing; however, they have received limited attention in traditional processes due to precision limitations and insufficient exposure, leading to an underestimation of their potential. In this article, we introduce a nanofabrication strategy using low-energy electrons in ice-assisted electron-beam lithography (iEBL) alleviating the compatibility issue between resolution and quasi-3D manufacturing.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada. Electronic address:
Mercury (Hg) and persistent organic pollutant (POP) accumulation among species and biomagnification through food webs is typically assessed using stable isotopes of nitrogen (δN) and carbon (δC) in bulk (whole) tissues. Yet, bulk isotopic approaches have limitations, notably from the potential overlap of isotope values from different dietary sources and from spatial variation in source (baseline) signals. Here, we explore the potential of fatty acid carbon isotopes (FA δC) to (1) evaluate the trophic structure of a marine food web, (2) distinguish feeding patterns among four marine mammal consumers, (3) trace contaminant biomagnification through a food web, and (4) explain interspecific variation in contaminants among high-trophic position predators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!