In the quest for cheap and earth abundant but highly effective and energy efficient water splitting catalysts, manganese oxide represents one of the materials of choice. In the framework of a new hierarchical modeling strategy we employ free non-ligated manganese oxide clusters MnxOx+y(+) (x = 2-5, y = -1, 0, 1, 2) as simplified molecular models to probe the interaction of water with nano-scale manganese oxide materials. Infrared multiple-photon dissociation (IR-MPD) spectroscopy in conjunction with first-principles spin density functional theory calculations is applied to study several series of MnxOx+y(H2O)n(+) complexes and reveal that the reaction of water with MnxOx+y(+) leads to the deprotonation of the water molecules via hydroxylation of the cluster oxo-bridges. This process is independent of the formal Mn oxidation state and occurs already for the first adsorbed water molecule and it proceeds until all oxo-bridges are hydroxylated. Additional water molecules are bound intact and favorably form H3O2 units with the hydroxylated oxo-bridges. Water adsorption and deprotonation is also found to induce structural transformations of the cluster core, including dimensionality crossover. Furthermore, the IR-MPD measurements reveal that clusters with one oxygen atom in excess MnxOx+1(+) contain a terminal O atom while clusters with two oxygen atoms in excess MnxOx+2(+) contain an intact O2 molecule which, however, dissociates upon adsorption of a minimum number of water molecules. These basic concepts could aid the future design of artificial water-splitting molecular catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp00779a | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.
Two-dimensional (2D) materials have been identified as promising candidates for future electronic devices. However, high dielectric constant (κ) materials, which can be integrated with 2D semiconductors, are still rare. Here, we report a hydrate-assisted thinning chemical vapor deposition (CVD) technique to grow manganese oxide (MnO) single crystal nanosheets, enabled by a strategy to minimize the substrate lattice mismatch and control the growth kinetics.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China. Electronic address:
Sodium-ion batteries (SIBs) have the advantages of abundant resources and low cost, making them potential candidates for the next-generation large-scale energy storage technology. However, the capacity fade during cycling used in sodium-ion batteries is a major challenge. The rational design of the electrolyte is one of the ways to solve these problems.
View Article and Find Full Text PDFRSC Adv
January 2025
CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences Chengdu 610041 China.
A novel multilayer nanoflake structure of manganese oxide/graphene oxide (γ-MnO/GO) was fabricated a simple template-free chemical precipitation method, and the modified carbon felt (CF) electrode with γ-MnO/GO composite was used as an anode material for microbial fuel cells (MFCs). The characterization results revealed that the γ-MnO/GO composite has a novel multilayer nanoflake structure and offers a large specific surface area for bacterial adhesion. The electrochemical analyses demonstrated that the γ-MnO/GO composite exhibited excellent electrocatalytic activity and enhanced the electrochemical reaction rate and reduced the electron transfer resistance, consequently facilitating extracellular electron transfer (EET) between the anode and bacteria.
View Article and Find Full Text PDFSmall
January 2025
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan.
Hollandite-type α-MnO exhibits exceptional promise in current industrial applications and in advancing next-generation green energy technologies, such as multivalent (Mg, Ca, and Zn) ion battery cathodes and aerobic oxidation catalysts. Considering the slow diffusion of multivalent cations within α-MnO tunnels and the catalytic activity at edge surfaces, ultrasmall α-MnO particles with a lower aspect ratio are expected to unlock the full potential. In this study, ultrasmall α-MnO (<10 nm) with a low aspect ratio (c/a ≈ 2) is synthesized using a newly developed alcohol solution process.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.
This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!