Human organic anion transporter 1 (hOAT1), expressed at the basolateral membrane of kidney proximal tubule cells, mediates the active renal secretion of a diverse array of clinically important drugs, including anti-human immunodeficiency virus therapeutics, antitumor drugs, antibiotics, antihypertensives, and anti-inflammatories. We have previously demonstrated that posttranslational modification of hOAT1 by ubiquitination is an important mechanism for the regulation of this transporter. The present study aimed at identifying the ubiquitin ligase for hOAT1 and its mechanism of action. We showed that overexpression of neural precursor cell expressed, developmentally downregulated (Nedd)4-1, an E3 ubiquitin ligase, enhanced hOAT1 ubiquitination, decreased hOAT1 expression at the cell surface, and inhibited hOAT1 transport activity. In contrast, overexpression of the ubiquitin ligase-dead mutant Nedd4-1/C867S was without effects on hOAT1. Furthermore, knockdown of endogenously expressed Nedd4-1 by Nedd4-1-specific small interfering RNA reduced hOAT1 ubiquitination. Immunoprecipitation experiments in cultured cells and rat kidney slices and immunofluorescence experiments in rat kidney slices showed that there was a physical interaction between OAT1 and Nedd4-1. Nedd4-1 contains four protein-protein interacting WW domains. When these WW domains were inactivated by mutating two amino acid residues in each of the four WW domains (Mut-WW1: V210W/H212G, Mut-WW2: V367W/H369G, Mut-WW3: I440W/H442G, and Mut-WW4: I492W/H494G, respectively), only Mut-WW2 and Mut-WW3 significantly lost their ability to bind and to ubiquitinate hOAT1. As a result, Mut-WW2 and Mut-WW3 were unable to suppress hOAT1-mediated transport as effectively as wild-type Nedd4-1. In conclusion, this is the first demonstration that Nedd4-1 regulates hOAT1 ubiquitination, expression, and transport activity through its WW2 and WW3 domains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243221PMC
http://dx.doi.org/10.1152/ajprenal.00153.2016DOI Listing

Publication Analysis

Top Keywords

hoat1 ubiquitination
16
hoat1
10
human organic
8
organic anion
8
anion transporter
8
ubiquitin ligase
8
transport activity
8
rat kidney
8
kidney slices
8
mut-ww2 mut-ww3
8

Similar Publications

Ubiquitin-specific peptidase 8 regulates the trafficking and stability of the human organic anion transporter 1.

Biochim Biophys Acta Gen Subj

December 2020

Department of Pharmaceutics, Rutgers, the State University of New Jersey, Piscataway, NJ, USA. Electronic address:

Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degradation. Ubiquitination is a dynamic process, where deubiquitination is catalyzed by a class of ubiquitin-specific peptidases.

View Article and Find Full Text PDF

Human organic anion transporter-1 (hOAT1) regulates the absorption, distribution, and excretion of a wide range of clinically important drugs. Our previous work demonstrated that hOAT1 is a dynamic membrane transporter, constitutively internalizing from and recycling back to the cell plasma membrane. Short-term activation (<30 minutes) of protein kinase C (PKC) promotes the attachment of a lysine 48-linked polyubiquitin chain to hOAT1, a process catalyzed by ubiquitin ligase neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2).

View Article and Find Full Text PDF

Human organic anion transporter 1 (hOAT1), expressed at the basolateral membrane of kidney proximal tubule cells, mediates the active renal secretion of a diverse array of clinically important drugs, including anti-human immunodeficiency virus therapeutics, antitumor drugs, antibiotics, antihypertensives, and anti-inflammatories. We have previously demonstrated that posttranslational modification of hOAT1 by ubiquitination is an important mechanism for the regulation of this transporter. The present study aimed at identifying the ubiquitin ligase for hOAT1 and its mechanism of action.

View Article and Find Full Text PDF

Human organic anion transporter 1 (hOAT1) expressed at the membrane of the kidney proximal tubule cells mediates the body disposition of a diverse array of clinically important drugs, including anti-HIV therapeutics, antitumor drugs, antibiotics, antihypertensives, and antiinflammatories. Therefore, understanding the regulation of hOAT1 will provide significant insights into kidney function and dysfunction. We previously established that hOAT1 transport activity is inhibited by activation of protein kinase C (PKC) through accelerating hOAT1 internalization from cell surface into intracellular endosomes and subsequent degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!