Background: The shape and duration of left ventricular outflow tract (LVOT) flow has not been applied to assess the central haemodynamics, although LVOT flow is confronted with afterload of arterial system during systole. The aim of this study was to evaluate whether the LVOT flow parameters are related with central systolic blood pressure (BP) and arterial compliance at rest and as well as during exercise.
Methods: We studied 258 subjects (175 females, age 61 ± 11 years) with normal left ventricular (LV) systolic function who underwent supine bicycle stress echocardiography and arterial tonometry simultaneously at rest and at peak exercise. Deceleration time (DT) of LVOT flow and RR interval were measured and deceleration time corrected for heart rate (DTc) was calculated. Peripheral and central haemodynamic parameters including systolic and diastolic BP, and augmentation index at a heart rate of 75 (AIx@75) were assessed using radial artery tonometry. Carotid femoral pulse wave velocity (PWV) was measured.
Resultresults: Deceleration time corrected for heart rate was independently associated with central systolic BP and AIx@75 at rest (P < 0.001 and 0.006). Similarly, it also showed significant independent correlations with central systolic BP and AIx@75 during peak exercise (P = 0.006 and P = 0.021). In addition, DTc which measured both at rest and at peak exercise demonstrated significant positive correlations with PWV, suggesting association of prolonged DTc with arterial stiffening (P = 0.023 and P = 0.005).
Conclusion: Prolongation of LVOT flow DTc represents raised central systolic BP and increased arterial stiffness not only at rest but also during exercise. Therefore, central aortic pressures and arterial stiffness influence the DT of LVOT flow at rest as well as during exercise in individuals with normal LV systolic function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ehjci/jew099 | DOI Listing |
Ultrasound J
January 2025
Health Sciences North Research Institute, Sudbury, ON, Canada.
The duration of mechanical systole-also termed the flow time (FT) or left ventricular ejection time (LVET)-is measured by Doppler ultrasound and increasingly used as a stroke volume (SV) surrogate to guide patient care. Nevertheless, confusion exists as to the determinants of FT and a critical evaluation of this measure is needed. Using Doppler ultrasound of the left ventricular outflow tract velocity time integral (LVOT VTI) as well as strain and strain rate echocardiography as grounding principles, this brief commentary offers a model for the independent influences of FT.
View Article and Find Full Text PDFInterdiscip Cardiovasc Thorac Surg
December 2024
Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.
Objectives: The common surgical treatment in patients with obstructive hypertrophic cardiomyopathy is septal myectomy. This involves resection of a segment of the myocardial septum and can be performed with and without concomitant anterior mitral valve leaflet extension (AMVLE). While both approaches have satisfying clinical outcomes, there is a lack of data regarding the added value of concomitant AMVLE.
View Article and Find Full Text PDFEur Heart J Case Rep
December 2024
Heart and Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, Sydney, NSW 2010, Australia.
Background: Subaortic pannus formation complicates bioprosthetic aortic valve (AV) replacement. We report an extreme case in a continuous-flow left ventricular assist device (LVAD) patient.
Case Summary: A 49-year-old Caucasian female with dilated cardiomyopathy was bridged to transplant with a HeartWare Ventricular Assist Device (Medtronic).
J Matern Fetal Neonatal Med
December 2024
Department of Ultrasound Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine/Shanghai First Maternity and Infant Hospital, Shanghai, China.
Quant Imaging Med Surg
October 2024
Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, China.
Background: Patients with different types of heart failure (HF) exhibit varying rates of blood flow through cardiac chambers and pressure gradients across the aortic valve, attributed to differing degrees of myocardial contractility. Assessment of these dynamics offers insights into early HF diagnosis. This study aimed to analyze left ventricular outflow tract (LVOT) blood flow parameters, specifically peak blood flow velocity and pressure gradient derived from four-dimensional flow cardiovascular magnetic resonance (4D flow CMR), and to evaluate 4D flow CMR's utility in distinguishing HF types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!