Unlabelled: Dependence is a hallmark feature of opiate addiction and is defined by the emergence of somatic and affective withdrawal signs. The nucleus accumbens (NAc) integrates dopaminergic and glutamatergic inputs to mediate rewarding and aversive properties of opiates. Evidence suggests that AMPA glutamate-receptor-dependent synaptic plasticity within the NAc underlies aspects of addiction. However, the degree to which NAc AMPA receptors (AMPARs) contribute to somatic and affective signs of opiate withdrawal is not fully understood. Here, we show that microinjection of the AMPAR antagonist NBQX into the NAc shell of morphine-dependent rats prevented naloxone-induced conditioned place aversions and decreases in sensitivity to brain stimulation reward, but had no effect on somatic withdrawal signs. Using a protein cross-linking approach, we found that the surface/intracellular ratio of NAc GluA1, but not GluA2, increased with morphine treatment, suggesting postsynaptic insertion of GluA2-lacking AMPARs. Consistent with this, 1-naphthylacetyl spermine trihydrochloride (NASPM), an antagonist of GluA2-lacking AMPARs, attenuated naloxone-induced decreases in sensitivity to brain stimulation reward. Naloxone decreased the surface/intracellular ratio and synaptosomal membrane levels of NAc GluA1 in morphine-dependent rats, suggesting a compensatory removal of AMPARs from synaptic zones. Together, these findings indicate that chronic morphine increases synaptic availability of GluA1-containing AMPARs in the NAc, which is necessary for triggering negative-affective states in response to naloxone. This is broadly consistent with the hypothesis that activation of NAc neurons produces acute aversive states and raises the possibility that inhibiting AMPA transmission selectively in the NAc may have therapeutic value in the treatment of addiction.
Significance Statement: Morphine dependence and withdrawal result in profound negative-affective states that play a major role in the maintenance of addiction. However, the underlying neurobiological mechanisms are not fully understood. We use a rat model of morphine dependence to show that GluA1 subunits of AMPA glutamate receptors in the nucleus accumbens (NAc), a brain region critical for modulating affective states, are necessary for aversive effects of morphine withdrawal. Using biochemical methods in NAc tissue, we show that morphine dependence increases cell surface expression of GluA1, suggesting that neurons in this area are primed for increased AMPA receptor activation upon withdrawal. This work is important because it suggests that targeting AMPA receptor trafficking and activation could provide novel targets for addiction treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879196 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2875-12.2016 | DOI Listing |
Phytother Res
January 2025
Department of Molecular and Developmental Medicine, School of Medicine, University of Siena, Polo Universitario San Miniato, Siena, Italy.
Drugs generally used in major depressive disorder are considered inappropriate for the more common milder forms. The efficacy of saffron extracts has been demonstrated in mild to moderate depression and in preclinical models of depression. However, evidence of saffron activity on reduced hedonic responsiveness and motivational anhedonia is limited.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada.
Background: The endocannabinoid system has demonstrated roles in Alzheimer's Disease (AD), such as modulation of inflammation. Fatty Acid Amide Hydrolase (FAAH) is the enzyme responsible for the rapid inactivation of the endocannabinoid anandamide into arachidonic acid and ethanolamine. In doing so, FAAH modulates the concentration of anandamide and influences neurobehavioral functions and physiological conditions such as nociception and inflammatory responses.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
Protein/protein interactions (PPI) play crucial roles in neuronal functions. Yet, their potential as drug targets for brain disorders remains underexplored. The fibroblast growth factor 14 (FGF14)/voltage-gated Na channel 1.
View Article and Find Full Text PDFNat Commun
January 2025
Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
The nucleus accumbens (NAc) is a key brain region for motivated behaviors, yet how distinct neuronal populations encode appetitive or aversive stimuli remains undetermined. Using microendoscopic calcium imaging in mice, we tracked NAc shell D1- or D2-medium spiny neurons' (MSNs) activity during exposure to stimuli of opposing valence and associative learning. Despite drift in individual neurons' coding, both D1- and D2-population activity was sufficient to discriminate opposing valence unconditioned stimuli, but not predictive cues.
View Article and Find Full Text PDFJ Neurosci
January 2025
Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
Regulation of food intake and energy balance is critical to survival. Hunger develops as a response to energy deficit and drives food-seeking and consumption. However, motivations to eat are varied in nature, and promoted by factors other than energy deficit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!