The transcription factor Yin Yang 1 (YY1) is frequently overexpressed in cancerous tissues compared to normal tissues and has regulatory roles in cell proliferation, cell viability, epithelial-mesenchymal transition, metastasis and drug/immune resistance. YY1 shares many properties with cancer stem cells (CSCs) that drive tumorigenesis, metastasis and drug resistance and are regulated by overexpression of certain transcription factors, including SOX2, OCT4 (POU5F1), BMI1 and NANOG. Based on these similarities, it was expected that YY1 expression would be associated with SOX2, OCT4, BMI1, and NANOG's expressions and activities. Data mining from the proteomic tissue-based datasets from the Human Protein Atlas were used for protein expression patterns of YY1 and the four CSC markers in 17 types of cancer, including both solid and hematological malignancies. A close association was revealed between the frequency of expressions of YY1 and SOX2 as well as SOX2 and OCT4 in all cancers analyzed. Two types of dynamics were identified based on the nature of their association, namely, inverse or direct, between YY1 and SOX2. These two dynamics define distinctive patterns of BMI1 and OCT4 expressions. The relationship between YY1 and SOX2 expressions as well as the expressions of BMI1 and OCT4 resulted in the classification of four groups of cancers with distinct molecular signatures: (1) Prostate, lung, cervical, endometrial, ovarian and glioma cancers (YY1(lo)SOX2(hi)BMI1(hi)OCT4(hi)) (2) Skin, testis and breast cancers (YY1(hi)SOX2(lo)BMI1(hi)OCT4(hi)) (3) Liver, stomach, renal, pancreatic and urothelial cancers (YY1(lo)SOX2(lo)BMI1(hi)OCT4(hi)) and (4) Colorectal cancer, lymphoma and melanoma (YY1(hi)SOX2(hi)BMI1(lo)OCT4(hi)). A regulatory loop is proposed consisting of the cross-talk between the NF-kB/PI3K/AKT pathways and the downstream inter-regulation of target gene products YY1, OCT4, SOX2 and BMI1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4881184 | PMC |
http://dx.doi.org/10.1186/s13046-016-0359-2 | DOI Listing |
Vavilovskii Zhurnal Genet Selektsii
November 2024
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
Frontotemporal dementia with parkinsonism-17 is a neurodegenerative disease characterised by pathological aggregation of the tau protein with the formation of neurofibrillary tangles and subsequent neuronal death. The inherited form of frontotemporal dementia can be caused by mutations in several genes, including the MAPT gene on chromosome 17, which encodes the tau protein. As there are currently no medically approved treatments for frontotemporal dementia, there is an urgent need for research using in vitro cell models to understand the molecular genetic mechanisms that lead to the development of the disease, to identify targets for therapeutic intervention and to test potential drugs to prevent neuronal death.
View Article and Find Full Text PDFPoult Sci
December 2024
Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Balice 32-083, Poland. Electronic address:
The nervous system's regenerative potential has sparked interest in exploring novel approaches to generate Schwann cell-like cells (SC-LCs) from chicken blastoderm (B)-derived embryonic stem cells (B-ESCs). This study investigates the hypothesis that specific growth factors, when used during ex-ovo culture, can induce the differentiation of chicken B-ESCs into cells resembling Schwann cells (SCs). Blastodermal cells (BCs) were isolated from in vivo-fertilized eggs at stage X followed by 14-d proliferative culture (PRC) of B-ESCs and subsequent 14-d glial/neurolemmogenic differentiation culture (DFC).
View Article and Find Full Text PDFKaohsiung J Med Sci
December 2024
Department of General Surgery Ward One, Anyang Tumor Hospital, Anyang, Henan, China.
The incidence and development of various tumors, such as hepatocellular carcinoma (HCC), are linked to tumor stem cells. Although research has revealed how important SCL/TAL1 interruption site (STIL) is in many human tumors, the impact of STIL on HCC stem cells is poorly understood. This study aimed to examine the regulatory mechanisms and the function of STIL in the stemness of HCC tumor cells.
View Article and Find Full Text PDFWorld J Methodol
December 2024
Department of Biology, St. Francis College, Brooklyn, NY 11201, United States.
In this Editorial review, we would like to focus on a very recent discovery showing the global autosomal gene regulation by Y- and inactivated X-chromosomal transcription factors, zinc finger gene on the Y chromosome (ZFY) and zinc finger protein X-linked (ZFX). ZFX and ZFY are both zinc-finger proteins that encode general transcription factors abundant in hematopoietic and embryonic stem cells. Although both proteins are homologs, interestingly, the regulation of self-renewal by these transcriptional factors is almost exclusive to ZFX.
View Article and Find Full Text PDFAlzheimers Res Ther
December 2024
Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
Background: Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the accumulation of pathological proteins and synaptic dysfunction. This study aims to investigate the molecular and functional differences between human induced pluripotent stem cells (hiPSCs) derived from patients with sporadic AD (sAD) and age-matched controls (healthy subjects, HS), focusing on their neuronal differentiation and synaptic properties in order to better understand the cellular and molecular mechanisms underlying AD pathology.
Methods: Skin fibroblasts from sAD patients (n = 5) and HS subjects (n = 5) were reprogrammed into hiPSCs using non-integrating Sendai virus vectors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!