Improvement of Charge Collection and Performance Reproducibility in Inverted Organic Solar Cells by Suppression of ZnO Subgap States.

ACS Appl Mater Interfaces

Department of Physics, Institute of Advanced Materials, and Institute of Research and Continuing Education (Shenzhen), Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, NT, Hong Kong.

Published: June 2016

Organic solar cells (OSCs) with inverted structure usually exhibit higher power conversion efficiency (PCE) and are more stable than corresponding devices with regular configuration. Indium tin oxide (ITO) surface is often modified with solution-processed low work function metal oxides, such as ZnO, serving as the transparent cathode. However, the defect-induced subgap states in the ZnO interlayer hamper the efficient charge collection and the performance reproducibility of the OSCs. In this work, we demonstrate that suppression of the ZnO subgap states by modification of its surface with an ultrathin Al layer significantly improves the charge extraction and performance reproducibility, achieving PCE of 8.0%, which is ∼15% higher than that of a structurally identical control cell made with a pristine ZnO interlayer. Light intensity-dependent current density-voltage characteristic, photothermal deflection spectroscopy, and X-ray photoelectron spectroscopy measurements point out the enhancement of charge collection efficiency at the organic/cathode interface, due to the suppression of the subgap states in the ZnO interlayer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b03619DOI Listing

Publication Analysis

Top Keywords

subgap states
16
charge collection
12
performance reproducibility
12
zno interlayer
12
collection performance
8
organic solar
8
solar cells
8
suppression zno
8
zno subgap
8
states zno
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!