Sphingosine-1-Phosphate Receptor 2 Regulates Proinflammatory Cytokine Production and Osteoclastogenesis.

PLoS One

Department of Oral Health Sciences, Center for Oral Health Research, Medical University of South Carolina, Charleston, South Carolina, United States of America.

Published: July 2017

Sphingosine-1-phosphate receptor 2 (S1PR2) couples with the Gi, Gq, and G12/13 group of proteins, which modulate an array of cellular signaling pathways and affect immune responses to multiple stimuli. In this study, we demonstrated that knockdown of S1PR2 by a specific S1PR2 shRNA lentiviral vector significantly inhibited IL-1β, IL-6, and TNF-α protein levels induced by oral pathogen Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) in murine bone marrow-derived monocytes and macrophages (BMMs) compared with controls. In addition, knockdown of S1PR2 by the S1PR2 shRNA lentiviral vector suppressed p-PI3K, p-ERK, p-JNK, p-p38, and p-NF-κBp65 protein expressions induced by A. actinomycetemcomitans. Furthermore, bone marrow cells treated with the S1PR2 shRNA lentiviral vector inhibited osteoclastogenesis induced by RANKL compared with controls. The S1PR2 shRNA suppressed the mRNA levels of six osteoclastogenic factors including nuclear factor of activated T-cells cytoplasmic calcineurin-dependent 1 (NFATc1), cathepsin K (Ctsk), acid phosphatase 5 (Acp5), osteoclast-associated receptor (Oscar), dendritic cells specific transmembrane protein (Dcstamp), and osteoclast stimulatory transmembrane protein (Ocstamp) in bone marrow cells. We conclude that S1PR2 plays an essential role in modulating proinflammatory cytokine production and osteoclastogenesis. Blocking S1PR2 signaling might be a novel therapeutic strategy to treat inflammatory bone loss diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880337PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0156303PLOS

Publication Analysis

Top Keywords

s1pr2 shrna
16
shrna lentiviral
12
lentiviral vector
12
s1pr2
9
sphingosine-1-phosphate receptor
8
proinflammatory cytokine
8
cytokine production
8
production osteoclastogenesis
8
knockdown s1pr2
8
vector inhibited
8

Similar Publications

Background/aims: Disrupted bile acid regulation and accumulation in the liver can contribute to progressive liver damage and fibrosis. However, the effects of bile acids on the activation of hepatic stellate cells (HSCs) remain unclear. This study investigated the effects of bile acids on HSC activation during liver fibrosis, and examined the underlying mechanisms.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) is a bioactive phospholipid that serves as a potent mediator of cell proliferation, differentiation and apoptosis by binding to S1P receptors (S1PRs). S1P signalling is involved in the pathogenesis of numerous types of disease, including cancer. To the best of our knowledge, however, little is known about the expression patterns of S1PRs and their role in human colorectal cancer (CRC) cell migration and invasion.

View Article and Find Full Text PDF

Sphingosine-1-phosphate receptor 2 (S1PR2) was highly expressed in intestinal epithelial cells (IECs) and facilitated the proliferation of IECs. However, the specific function of S1PR2 in intestinal diseases, such as ulcerative colitis (UC), remains unclear. Accordingly, the current study set out to investigate the function of S1PR2 in maintaining intestinal barrier and inducing UC.

View Article and Find Full Text PDF

Sphingosine-1-phosphate receptor 2 (S1PR2) is a G protein-coupled receptor that regulates various immune responses. Herein, we determine the effects of a S1PR2 antagonist (JTE013) or a S1PR2 shRNA on osteogenesis by culturing murine bone marrow stromal cells (BMSCs) in osteogenic media with JTE013, dimethylsulfoxide (DMSO), a S1PR2 shRNA, or a control shRNA. Treatment with JTE013 or the S1PR2 shRNA increased alkaline phosphatase and alizarin red s staining, and enhanced alkaline phosphatase, RUNX2, osteocalcin, and osterix mRNA levels in BMSCs compared with the controls.

View Article and Find Full Text PDF

High interstitial level of ATP and its lysate adenosine in the cancer microenvironment are considered a halo mark of cancer. Adenosine acts as a strong immune suppressor. However, the source of ATP release is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!