Investigation of the mechanisms of neuroprotection mediated by Ro5-4864 in brain injury.

Neuroscience

Eliachar Research Laboratory, Medical Center of the Galilee, Faculty of Medicine in the Galilee, University of Bar Ilan, Naharia 22100, Israel; Department of Neurosurgery, Medical Center of the Galilee, Faculty of Medicine in the Galilee, University of Bar Ilan, Naharia 22100, Israel. Electronic address:

Published: August 2016

Increasing evidence has established the involvement of the 18-kDa translocator protein (TSPO) in the process of mitochondrial membrane permeabilization and subsequent apoptosis through modulation of the mitochondrial permeability transition pore. Recent studies have shown that treatment with Ro5-4864, a TSPO ligand, resulted in a neuroprotective effect in traumatic brain injury. Yet, the nature of this effect remained uncertain as mature neurons are considered to be lacking the TSPO protein. In order to investigate the mechanism of Ro5-4864-mediated neuroprotection, the neuro-inflammatory and neurosteroid response to cortical injury was tested in sham-operated, vehicle, cyclosporine A (CsA) and Ro5-4864-treated rats. As anticipated, the levels of interleukin 1β and tumor necrosis factor α, as well as the astrocyte and microglia cellular density in the injured area were all decreased by CsA in comparison with the vehicle group. By contrast, no visible effect could be observed in Ro5-4864-treated animals. None of the groups showed any significant difference with any other in respect with the expression of brain-derived neurotrophic factor. Double immunofluorescence staining with NeuN and TSPO confirmed the absence of TSPO in native neurons though showed clear evidence of co-localization of TSPO in the cytoplasm of NeuN-stained injured neurons. Altogether, this study shows that the neuronal protection mediated by Ro5-4864 in brain injury cannot be solely attributed to an indirect effect of the ligand on glial TSPO but may also represent the consequence of the modulation of upregulated TSPO in injured neurons. This observation may be of importance for future pharmacological research in neurotrauma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2016.05.014DOI Listing

Publication Analysis

Top Keywords

brain injury
12
mediated ro5-4864
8
ro5-4864 brain
8
tspo
8
injured neurons
8
investigation mechanisms
4
mechanisms neuroprotection
4
neuroprotection mediated
4
injury
4
injury increasing
4

Similar Publications

Background And Objective: To determine whether there is disproportionate reporting of hepatobiliary disorders in the United States (US) FDA Adverse Event Reporting System (FAERS) for individuals prescribed ketamine or esketamine.

Design: We identified Medical Dictionary for Regulatory Activities (MedDRA) terms in the FAERS related to hepatobiliary disorders.

Main Measures: Formulations of ketamine and esketamine were evaluated for the proportionality of reporting for each hepatobiliary disorder parameter using the reporting odds ratio (ROR).

View Article and Find Full Text PDF

Histamine H receptor blockade alleviates neuropathic pain through the regulation of glial cells activation.

Biomed Pharmacother

January 2025

Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, 12 Smetna Str., Krakow 31-343, Poland. Electronic address:

Neuropathic pain is a disorder affecting the somatosensory nervous system. However, this condition is also characterized by significant neuroinflammation, primarily involving CNS-resident non-neuronal cells. A promising target for developing new analgesics is histamine H receptor (HR); thus, we aimed to determine the influence of a novel HR antagonist/inverse agonist, E-98 (1-(7-(4-chlorophenoxy)heptyl)-3-methylpiperidine), on pain symptoms and glia activation in model of neuropathic pain in male mice (chronic constriction injury to the sciatic nerve).

View Article and Find Full Text PDF

Cerebral Global Ischemia (CGI) is a devastating neurological condition affecting millions globally each year, leading to significant inflammatory responses and long-term consequences, including delayed neuronal death and neurocognitive impairment. Following brain injury, resident microglial cells are activated, triggering pro-inflammatory cytokine expression and altering neuroimmune processes in a sex-dependent manner, particularly within the hippocampus. Coumestrol, a plant estrogen, is promoted as an alternative to post-menopausal hormone therapy due to its various mechanisms that enhance brain health, including its anti-inflammatory effects.

View Article and Find Full Text PDF

Introduction: Neurogenic bladder dysfunction is a prevalent condition characterized by impaired bladder control resulting from neurological conditions, for example, spinal cord injury or traumatic brain injury (TBI). Detrusor overactivity is a typical symptom of central nervous system damage. A lesion affecting the pontine neural network typically results in loss of tonic inhibition exerted by the pontine micturition center and causes involuntary detrusor contractions.

View Article and Find Full Text PDF

Background: Epileptiform activity, including status epilepticus (SE), occurs in up to one-third of comatose survivors of cardiac arrest and may predict poor outcome. The relationship between SE and hypoxic-ischemic brain injury (HIBI) is not established.

Methods: This is a single-center retrospective study on consecutive patients with post-anoxic super-refractory SE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!