Defining biomarkers that predict therapeutic effects and adverse events is a crucial mandate to guide patient selection for personalized cancer treatments. In the present study, we applied a pharmacometabolomics approach to identify biomarkers potentially associated with pathological complete response to trastuzumab-paclitaxel neoadjuvant therapy in HER-2 positive breast cancer patients. Based on histological response the 34 patients enrolled in the study were subdivided into two groups: good responders (n = 15) and poor responders (n = 19). The pre-treatment serum targeted metabolomics profile of all patients were analyzed by liquid chromatography tandem mass spectrometry and the differences in the metabolomics profile between the two groups was investigated by multivariate partial least squares discrimination analysis. The most relevant metabolites that differentiate the two groups of patients were spermidine and tryptophan. The Good responders showed higher levels of spermidine and lower amounts of tryptophan compared with the poor responders (p < 0.001, q < 0.05). The serum level of these two metabolites identified patients who achieved a pathological complete response with a sensitivity of 90% [0.79-1.00] and a specificity of 0.87% [0.67-1.00]. These preliminary results support the role played by the individual patients' metabolism in determining the response to cancer treatments and may be a useful tool to select patients that are more likely to benefit from the trastuzumab-paclitaxel treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129972PMC
http://dx.doi.org/10.18632/oncotarget.9489DOI Listing

Publication Analysis

Top Keywords

spermidine tryptophan
8
biomarkers associated
8
response trastuzumab-paclitaxel
8
trastuzumab-paclitaxel neoadjuvant
8
neoadjuvant therapy
8
therapy her-2
8
her-2 positive
8
positive breast
8
breast cancer
8
cancer treatments
8

Similar Publications

Food leftovers can be used as alternative feed ingredients for monogastric to replace human-competing feedstuffs, such as cereals, recycle a waste product, reduce the feed-food competition and keep nutrients and energy in the feed-food chain. Among food leftovers, former food products (FFPs) are no more intended for human but still suitable for animal consumption. However, the metabolic impact of FFP has never been investigated.

View Article and Find Full Text PDF

Metabolic characteristics of prostate cancer cells with high metastatic potential revealed by (S)-ethyl 1-(3-(4-chlorophenoxy)-2-hydroxypropyl)-3-(4-methoxyphenyl)-1H-pyrazole-5-carboxylate inhibition.

J Pharm Biomed Anal

December 2024

School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, PR China.

A small molecule, (S)-ethyl 1-(3-(4-chlorophenoxy)-2-hydroxypropyl)-3-(4-methoxyphenyl)-1H-pyrazole-5-carboxylate (SEC), has been reported to be capable of suppressing metastasis of prostate cancer (PCa) cells. In this study, SEC was used to study the metabolic responses of PCa cell lines (LNCaP, PC3, and DU145) with different metastatic potential and the alterations of mTOR, p-mTOR, AMPK, and p-AMPK levels, when the PCa cells were inhibited. The ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS)-based analysis showed that SEC induced the decreases of intracellular metabolites including glutamic acid, glutamine, and histidine (LNCaP); creatinine, citric acid/isocitric acid, and aspartic acid (PC3); and spermidine, S-hydroxymethylglutathione, LPE (20:3), and palmitic amide (DU145), and the increases of intracellular LPC (18:0) (LNCaP); tyrosine, pyroglutamic acid/pyrroline hydroxycarboxylic acid (PC3); and tyrosine, phenylalanine, phenylacetylglycine, spermine, histidine, and choline (DU145).

View Article and Find Full Text PDF

Toxicity of antimony to plants: Effects on metabolism of N and S in a rice plant.

Plant Physiol Biochem

November 2024

Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, 350002, China. Electronic address:

Excess antimony (Sb) has been shown to damage plant growth. Rice plants readily absorb a large amount of Sb after a long period of flooding, yet the mechanisms underlying Sb toxicity in plants have not been solved. This study was conducted to explore the effects of Sb on the uptake of N and S, and monitor the concentrations of reduced glutathione (GSH) and enzymes associated with these processes.

View Article and Find Full Text PDF

Mechanism and clinical implication of gut dysbiosis in degenerative abdominal aortic aneurysm: A systematic review.

Asian J Surg

December 2024

Division of Vascular & Endovascular Surgery, Department of Surgery, University of Hong Kong Medical Centre, South Wing, 14th Floor K Block, Queen Mary Hospital, Hong Kong Special Administrative Region. Electronic address:

The gut microbiome is the entirety of microorganisms and their genomes residing in the gut, characterised by diversity, stability, and resilience. Disrupted gut microbiome has been implicated in multiple disease entities. The aim of this paper is to summarise the rapidly evolving contemporary evidence of gut dysbiosis on the development and progression of abdominal aortic aneurysm (AAA), discuss possible mechanisms, and explore potential microbiota-targeted interventions and prognostic markers for AAA.

View Article and Find Full Text PDF

Comprehensive pulmonary metabolic responses to silica nanoparticles exposure in Fisher 344 rats.

Ecotoxicol Environ Saf

April 2024

Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China. Electronic address:

Silica nanoparticles (SiNPs) could induce adverse pulmonary effects, but the mechanism was not clear enough. Metabolomics is a sensitive and high-throughput approach that could investigate the intrinsic causes of adverse health effects caused by SiNPs. The current investigation represented the first in vivo metabolomics study examining the chronic pulmonary toxicity of SiNPs at a low dosage, mimicking real human exposure situation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!