Gathering genomic-scale data efficiently is challenging for nonmodel species with large, complex genomes. Transcriptome sequencing is accessible for organisms with large genomes, and sequence capture probes can be designed from such mRNA sequences to enrich and sequence exonic regions. Maximizing enrichment efficiency is important to reduce sequencing costs, but relatively few data exist for exon capture experiments in nonmodel organisms with large genomes. Here, we conducted a replicated factorial experiment to explore the effects of several modifications to standard protocols that might increase sequence capture efficiency for amphibians and other taxa with large, complex genomes. Increasing the amounts of c0 t-1 repetitive sequence blocker and individual input DNA used in target enrichment reactions reduced the rates of PCR duplication. This reduction led to an increase in the percentage of unique reads mapping to target sequences, essentially doubling overall efficiency of the target capture from 10.4% to nearly 19.9% and rendering target capture experiments more efficient and affordable. Our results indicate that target capture protocols can be modified to efficiently screen vertebrates with large genomes, including amphibians.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-0998.12538 | DOI Listing |
G3 (Bethesda)
January 2025
Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France.
Genetic studies of Plasmodium parasites increasingly feature relatedness estimates. However, various aspects of malaria parasite relatedness estimation are not fully understood. For example, relatedness estimates based on whole-genome-sequence (WGS) data often exceed those based on sparser data types.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA.
The demographic history of a population, and the distribution of fitness effects (DFE) of newly arising mutations in functional genomic regions, are fundamental factors dictating both genetic variation and evolutionary trajectories. Although both demographic and DFE inference has been performed extensively in humans, these approaches have generally either been limited to simple demographic models involving a single population, or, where a complex population history has been inferred, without accounting for the potentially confounding effects of selection at linked sites. Taking advantage of the coding-sparse nature of the genome, we propose a 2-step approach in which coalescent simulations are first used to infer a complex multi-population demographic model, utilizing large non-functional regions that are likely free from the effects of background selection.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Dermatology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing 400042, China.
Psoriasis affects a significant proportion of the worldwide population and causes an extremely heavy psychological and physical burden. The existing therapeutic schemes have many deficiencies such as limited efficacies and various side effects. Therefore, novel ways of treating psoriasis are urgently needed.
View Article and Find Full Text PDFMicrob Genom
January 2025
Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany.
Genomic data on from the African continent are currently lacking, resulting in the region being under-represented in global analyses of infection (CDI) epidemiology. For the first time in Nigeria, we utilized whole-genome sequencing and phylogenetic tools to compare isolates from diarrhoeic human patients (=142), livestock (=38), poultry manure (=5) and dogs (=9) in the same geographic area (Makurdi, north-central Nigeria) and relate them to the global population. In addition, selected isolates were tested for antimicrobial susceptibility (=33) and characterized by PCR ribotyping (=53).
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2023
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
Retrotransposons are highly prevalent in most animals and account for more than 35% of the human genome. However, the prevalence, biogenesis mechanism and function of retrotransposons remain largely unknown. Here, we developed retroSeeker, a novel computational software that identifies novel retrotransposons from pairwise alignments of genomes and decodes their biogenesis, expression, evolution and potential functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!