Complete/partial loss of SMARCB1 nuclear-immunopositivity is characteristic of a certain subset of soft tissue sarcomas (STSs). Our previous work showed that oncomiRs-206,-381, and 671-5p could silence the SMARCB1 mRNA and protein expression and that they display significant overexpression in epithelioid sarcomas (ESs). MiR-765 was overexpressed too, but functionally was inactive in the silencing. In the current work, using quantitative PCR, we conducted a miRNA study of 51 ESs, 20 rhabdoid tumors (RTs), 20 synovial sarcomas (SSs), 15 malignant peripheral nerve sheath tumors (MPNSTs), 11 myoepithelial carcinomas (MECs), and 10 extraskeletal myxoid chondrosarcomas (EMCSs) with complete/partial loss of SMARCB1 nuclear immunostain, in contrast to controls (SMARCB1-immunopositive) of 96 STSs, 13 melanomas and 10 sarcomatoid carcinomas. The SMARCB1 genetic status of ESs was determined by MLPA and FISH. A subset of ESs (5/51) showed biallelic deletion of SMARCB1 with no overexpression of any miRNA, suggesting these tumors could be the counterpart of pediatric RT, at least genetically. Another subset (5/51) was genetically either intact or monoallelic deleted with at least threefold overexpression of one of miR-206,-381,-671-5p, suggesting epigenetic regulation only. 39/51 ESs had a biallelic deletion (>20% by FISH and/or by MLPA) but with overexpressed miR-206,-381, and 671-5p, suggesting intratumoral heterogeneity, i.e., both genetic and epigenetic regulation. At least threefold overexpression of one of miR-206,-381, and 671-5p was detected in all MPNSTs, EMCSs, SSs and 7 MCs. Except for ESs, four SSs and one MPNST, there was no event above threefold overexpression of miR-765 among all 195 tested tumors. Our results suggest a general role of miR-206,-381, and 671-5p in SMARCB1 gene silencing of ES, MC, EMCS, MPNST and SS. In the future, miR-765 could possibly be a diagnostic tool for ES because of its 97% specificity and 80% sensitivity. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/gcc.22379DOI Listing

Publication Analysis

Top Keywords

epigenetic regulation
12
soft tissue
12
tissue sarcomas
12
threefold overexpression
12
mir-206-381 671-5p
12
smarcb1
8
mirna study
8
complete/partial loss
8
loss smarcb1
8
biallelic deletion
8

Similar Publications

Histone Modifications and DNA Methylation in Psoriasis: A Cellular Perspective.

Clin Rev Allergy Immunol

January 2025

Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis.

View Article and Find Full Text PDF

Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.

View Article and Find Full Text PDF

KAT2B inhibits proliferation and invasion via inactivating TGF-β/Smad3 pathway-medicated autophagy and EMT in epithelial ovarian cancer.

Sci Rep

January 2025

Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.

Lysine acetyltransferase 2B (KAT2B) plays a crucial role in epigenetic regulation and tumor pathogenesis. Our study investigates KAT2B's function in epithelial ovarian cancer (EOC) using in vivo and in vitro methods. Immunohistochemistry showed the KAT2B expression in EOC tissues.

View Article and Find Full Text PDF

Background: Fasting-mimicking diet (FMD) boosts the antitumour immune response in patients with colorectal cancer (CRC). The gut microbiota is a key host immunity regulator, affecting physiological homeostasis and disease pathogenesis.

Objective: We aimed to investigate how FMD protects against CRC via gut microbiota modulation.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!