Background: This is the second in a series of papers detailing the terrestrial arthropods collected during an intensive survey of a site near Steel Creek campground along the Buffalo National River in Arkansas. The survey was conducted over a period of eight and a half months using twelve trap types - Malaise traps, canopy traps (upper and lower collector), Lindgren multifunnel traps (black, green, and purple), pan traps (blue, purple, red, white, and yellow), and pitfall traps - and Berlese-Tullgren extraction of leaf litter.
New Information: We provide collection records for 47 species of "Symphyta" (Insecta: Hymenoptera), 30 of which are new state records for Arkansas: (Argidae) Sterictiphora serotina; (Cimbicidae) Abia americana; (Diprionidae) Monoctenus fulvus; (Orussidae) Orussus terminalis; (Pamphiliidae) Onycholyda luteicornis, Pamphilius ocreatus, P. persicum, P. rileyi; (Pergidae) Acordulecera dorsalis, A. mellina, A. pellucida; (Tenthredinidae) Caliroa quercuscoccineae, Empria coryli, Hoplocampa marlatti, Macrophya cassandra, Monophadnoides conspiculatus, Monophadnus bakeri, Nematus abbotii, Neopareophora litura, Pachynematus corniger, Paracharactus rudis, Periclista marginicollis, Pristiphora banski, P. chlorea, Strongylogaster impressata, S. remota, Taxonus epicera, Thrinax albidopictus, T. multicinctus, Zaschizonyx montana; (Xiphydriidae) Xiphydria tibialis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4867044 | PMC |
http://dx.doi.org/10.3897/BDJ.4.e8830 | DOI Listing |
Environ Microbiol
January 2025
Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
Cellulolytic flagellates are essential for the symbiotic digestion of lignocellulose in the gut of lower termites. Most species are associated with host-specific consortia of bacterial symbionts from various phyla. 16S rRNA-based diversity studies and taxon-specific fluorescence in situ hybridization revealed a termite-specific clade of Actinomycetales that colonise the cytoplasm of Trichonympha spp.
View Article and Find Full Text PDFActa Parasitol
January 2025
Aix Marseille University, IRD, VITROME, Marseille, 13005, France.
Purpose: Tick diversity in Algeria has garnered increasing interest due to its implications for animal health and zoonotic diseases. Recent reports of abnormal ulcerative lesions in goats and sheep in the Cheria region of northeastern Algeria have raised concerns about a potential association with tick infestations. The aim of this study is to hypothesize the potential involvement of ticks in these unusual lesions.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Centre for Biodiversity and Sustainability, School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
Riparian ecosystems harbour unique biodiversity because of their close interconnections with adjacent aquatic ecosystems. Yet, how aquatic ecosystems influence terrestrial biodiversity over different spatial scales is poorly understood, particularly in the tropics. We conducted field campaigns to collect 235 terrestrial invertebrate assemblages along 150 m transects from 47 streams in both Brazil and the UK, compiling one of the largest known datasets of riparian invertebrate community composition at multiple spatial scales.
View Article and Find Full Text PDFToxics
November 2024
Department of Biology, Cherepovets State University, 5 Lunacharsky pr., 162602 Cherepovets, Russia.
Mercury is considered to be one of the chemical elements posing the greatest threats to the health of most animals and can be transferred from aquatic ecosystems to terrestrial food webs. Many bat species forage above water, and their food sources include aquatic and amphibious organisms. Bats are very sensitive to the slightest changes in the environment.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
(1) Car tyre microplastic particles (TMPs) significantly contribute to global microplastic pollution, with an estimated annual production of 6 million tonnes. However, the impact of TMPs, particularly tyre and road wear particles (TRWPs), resulting from tyre abrasion on the road on terrestrial organisms, is poorly understood. This study investigated the effects of TMPs and TRWPs on the growth, immune response, behaviour, and cognition of the woodlouse over 30 days; (2) TMPs and TRWPs were mixed together in the first experiment and provided at different concentrations of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!