Effect of Fiber Crimp on the Elasticity of Random Fiber Networks With and Without Embedding Matrices.

J Appl Mech

Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Jonsson Engineering Center, Room 2048, 110 8th Street, Troy, NY 12180;

Published: April 2016

AI Article Synopsis

  • Fiber networks consist of one-dimensional elements that mimic fibrous materials like collagen and synthetic nonwovens, with past studies mainly focusing on their mechanics.
  • The current research examines how crimped fibers, which are not straight, affect the stiffness of cross-linked networks, utilizing simulations and a model to predict changes in network stiffness based on crimp amplitude.
  • Results show that crimp leads to a gradual transition from linear to nonlinear elasticity in the network and its influence diminishes when embedded in an elastic matrix, although it increases the likelihood of stress failure in the matrix due to a broader stress distribution.

Article Abstract

Fiber networks are assemblies of one-dimensional elements representative of materials with fibrous microstructures such as collagen networks and synthetic nonwovens. The mechanics of random fiber networks has been the focus of numerous studies. However, fiber crimp has been explicitly represented only in few cases. In the present work, the mechanics of cross-linked networks with crimped athermal fibers, with and without an embedding elastic matrix, is studied. The dependence of the effective network stiffness on the fraction of nonstraight fibers and the relative crimp amplitude (or tortuosity) is studied using finite element simulations of networks with sinusoidally curved fibers. A semi-analytic model is developed to predict the dependence of network modulus on the crimp amplitude and the bounds of the stiffness reduction associated with the presence of crimp. The transition from the linear to the nonlinear elastic response of the network is rendered more gradual by the presence of crimp, and the effect of crimp on the network tangent stiffness decreases as strain increases. If the network is embedded in an elastic matrix, the effect of crimp becomes negligible even for very small, biologically relevant matrix stiffness values. However, the distribution of the maximum principal stress in the matrix becomes broader in the presence of crimp relative to the similar system with straight fibers, which indicates an increased probability of matrix failure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4844250PMC
http://dx.doi.org/10.1115/1.4032465DOI Listing

Publication Analysis

Top Keywords

fiber networks
12
presence crimp
12
fiber crimp
8
random fiber
8
crimp
8
elastic matrix
8
crimp amplitude
8
networks
6
fiber
5
matrix
5

Similar Publications

Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures.

View Article and Find Full Text PDF

In naval engineering, particular attention has been given to containerships, as these structures are constantly exposed to potential damage during service hours and since they are essential for large-scale transportation. To assess the structural integrity of these ships and to ensure the safety of the crew and the cargo being transported, it is essential to adopt structural health monitoring (SHM) strategies that enable real-time evaluations of a ship's status. To achieve this, this paper introduces an advancement in the field of smart sensing and SHM that improves ship monitoring and diagnostic capabilities.

View Article and Find Full Text PDF

With the fast-fashion trend, an increasing number of discarded clothing items are being eliminated at the stages of both pre-consumer and post-consumer each year. The linear economy produces large volumes of waste, which harm environmental sustainability. This study addresses the pressing need for efficient textile recycling in the circular economy (CE).

View Article and Find Full Text PDF

Intelligent Pattern Recognition Using Distributed Fiber Optic Sensors for Smart Environment.

Sensors (Basel)

December 2024

Centre for Photonic Devices and Sensors, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK.

Distributed fiber optic sensors (DFOSs) have become increasingly popular for intrusion detection, particularly in outdoor and restricted zones. Enhancing DFOS performance through advanced signal processing and deep learning techniques is crucial. While effective, conventional neural networks often involve high complexity and significant computational demands.

View Article and Find Full Text PDF

Assessing the Nutrient Composition of a Carnivore Diet: A Case Study Model.

Nutrients

December 2024

Human Potential Centre, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 0632, New Zealand.

Background/objectives: The rise in chronic metabolic diseases has led to the exploration of alternative diets. The carnivore diet, consisting exclusively of animal products, has gained attention, anecdotally, for imparting benefit for inflammatory conditions beyond that possible by other restrictive dietary approaches. The aim was to assess the micronutrient adequacy of four versions of the carnivore diet against national nutrient reference values (NRVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!