Tilapia, a teleost fish, have multiple large anatomically discrete islets which are easy to harvest, and when transplanted into diabetic murine recipients, provide normoglycemia and mammalian-like glucose tolerance profiles. Tilapia insulin differs structurally from human insulin which could preclude their use as islet donors for xenotransplantation. Therefore, we produced transgenic tilapia with islets expressing a humanized insulin gene. It is now known that fish genomes may possess an ancestral duplication and so tilapia may have a second insulin gene. Therefore, we cloned, sequenced, and characterized the tilapia insulin 2 transcript and found that its expression is negligible in islets, is not islet-specific, and would not likely need to be silenced in our transgenic fish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987019PMC
http://dx.doi.org/10.1080/19382014.2016.1187352DOI Listing

Publication Analysis

Top Keywords

insulin gene
16
gene tilapia
8
transgenic tilapia
8
expressing humanized
8
humanized insulin
8
tilapia insulin
8
insulin
7
tilapia
7
ancestral genomic
4
genomic duplication
4

Similar Publications

Background: Insulin signaling deregulation in the brain is a critical risk factor for Alzheimer's disease (AD); however, molecular changes in this pathway during AD pathogenesis cannot be currently accessed in clinical setting due to lack of brain tissues. Here, we propose small extracellular vesicles (sEV) characterization as a non-invasive approach to assess the status of insulin signaling in the AD brain.

Method: In postmortem brain tissues of cognitively normal (CN) and AD (n=5 each) subjects, expression of 84 genes, involved in insulin signaling and resistance was analyzed using pathway specific PCR array.

View Article and Find Full Text PDF

Background: Insulin Resistance (IR) is implicated in brain aging and Alzheimer's disease (AD) pathogenesis. Dietary changes may promote brain health in older adults with metabolic abnormalities. An extensive animal literature suggests pro-cognitive and beneficial systemic and brain effects of intermittent fasting (IF) that may mitigate AD risk.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

McGill Univeristy, Montréal, QC, Canada.

Background: Alzheimer's disease is characterized by early decreases in cerebral glucose metabolism which are linked to reduced glucose transporter 1 (GLUT1) expression at the blood-brain barrier (BBB). Another key disease hallmark is the abundance of Aβ peptides as plaques in the brain which arise from the processing of the amyloid precursor protein (APP). Autosomal dominant inherited mutations causatively link APP itself to AD, rendering it imperative to fully understand APP's physiological functions to define the underlying biology of AD.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

University of Kentucky, Lexington, KY, USA.

Background: Amylin is a systemic hormone that is co-secreted with insulin from pancreatic β-cells. Amylin co-aggregates with brain parenchymal and vascular β-amyloid in persons with Alzheimer's dementia. The present pilot study sought to assess the safety and side effects during and after the treatment period of passive amylin immunotherapy in the APP/PS1 mouse model of Alzheimer's disease.

View Article and Find Full Text PDF

Insulin receptor substrate (IRS)-1 and IRS-2 are major molecules that transduce signals from insulin and insulin-like growth factor-I receptors. The physiological functions of these proteins have been intensively investigated in mice, while little is known in other animals. Our previous study showed that the disruption of IRS-2 impairs body growth but not glucose tolerance or insulin sensitivity in rats, which led us to hypothesize that IRS-1 plays more pivotal roles in insulin functions than IRS-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!