Objective: To investigate antimicrobial resistance of Klebsiella pneumoniae and Pseudomonas aeruginosa isolates in fecal samples from rat-like animals.
Methods: Rat-like animals were captured using cages around a hospital and the neighboring residential area between March and October, 2015. K. pneumoniae and P. aeruginosa were isolated from the fecal samples of the captured animals. Antimicrobial susceptibility test was performed according to the guidelines of Clinical and Laboratory Standards Institute (2014).
Results: A total of 329 rat-like animals were captured, including 205 Suncus murinus, 111 Rattus norvegicus, 5 Rattus flavipectus and 8 Mus musculus. The positivity rates of K. pneumoniae and P. aeruginosa were 78.4% and 34.7% in the fecal samples from the captured animals, respectively. K. pneumoniae isolates from Suncus murinus showed a high resistance to ampicillin, cephazolin, nitrofurantoin, piperacillin and cefotaxime (with resistance rates of 100%, 51.2%, 44.2%, 37.2%, and 23.3%, respectively), and K. pneumoniae isolates from Rattus spp. showed a similar drug-resistance profile. The prevalence rates of multidrug resistance and ESBLs were 40.9% and 10.7%, respectively. P. aeruginosa from both Suncus murinus and Rattus spp. exhibited the highest resistance rates to aztreonam (12.4% and 16.0%, respectively), followed by penicillins and fluoroquinolones. P. aeruginosa isolates were susceptible to cephems, aminoglycosides and carbapenems (with resistance rates below 5%).
Conclusion: K. pneumoniae and P. aeruginosa isolated from rat-like animals showed drug-resistance profiles similar to those of the strains isolated from clinical patients, suggesting that the possible transmission of K. pneumoniae and P. aeruginosa between rat-like animals and human beings.
Download full-text PDF |
Source |
---|
Med Phys
January 2025
Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
Cell
April 2024
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address:
Interspecies blastocyst complementation (IBC) provides a unique platform to study development and holds the potential to overcome worldwide organ shortages. Despite recent successes, brain tissue has not been achieved through IBC. Here, we developed an optimized IBC strategy based on C-CRISPR, which facilitated rapid screening of candidate genes and identified that Hesx1 deficiency supported the generation of rat forebrain tissue in mice via IBC.
View Article and Find Full Text PDFEJNMMI Phys
December 2023
Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, ZH, Switzerland.
Background: Small Animal Fast Insert for MRI detector I (SAFIR-I) is a novel Positron Emission Tomography insert for a [Formula: see text] Bruker BioSpec 70/30 Ultra Shield Refrigerated Magnetic Resonance Imaging (MRI) system. It facilitates truly simultaneous quantitative imaging in mice and rats at injected activities as high as [Formula: see text]. Exploitation of the resulting high count rates enables quick image formation at few seconds per frame.
View Article and Find Full Text PDFBone
February 2024
Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA 91320, USA. Electronic address:
Sclerostin is an extracellular inhibitor of canonical Wnt signaling that inhibits bone formation and stimulates bone resorption. Anti-sclerostin antibodies (Scl-Ab) have been developed as bone-building agents. DKK1, another extracellular inhibitor of the pathway, is upregulated in osteocytes in response to sclerostin inhibition.
View Article and Find Full Text PDFComput Methods Programs Biomed
October 2023
College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230026, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230026, China. Electronic address:
Background And Objective: For positron emission tomography (PET) scanners with depth-of-interaction (DOI) measurement, the DOI rebinning method that utilizes DOI information to process the projection data is critical to image quality. Current DOI rebinning methods map coincidence events onto the rebinned sinogram based on the correlation of lines of response (LOR). This study aims to incorporate prior radioactivity distribution of the imaging object into DOI rebinning to obtain better image quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!