Objective: To investigate the effects of dexmedetomidine on renal microcirculatory perfusion in rabbits with renal ischemia/reperfusion (I/R) injury rabbit by quantitative analysis of contrast-enhanced ultrasound (CEUS).

Methods: Twenty- four New Zealand rabbits were randomly divided into 3 groups (8 in each), including a control group, renal I/R injury group and dexmedetomidine group. In the latter two groups, the right kidney of the rabbits was resected and I/R injury was induced in the left kidney. In dexmedetomidine group, the rabbits received an intraperitoneal dose of 10 µg/kg dexmedetomidine 30 min before renal ischemia, and 24 h after reperfusion, the renal size and renal artery resistance (RI) were measured, and renal cortex perfusion was observed by CEUS. The time-to-peak intensity (TTP), peak signal intensity (PSI), gradient between start frame to peak frame (Grad) and area under the curve (AUC) were quantitatively analyzed using the time-intensity curves. Pathological changes of the kidney were also observed.

Results: Compared with the control group, the rabbits in I/R and dexmedetomidine groups showed distinct changes of the renal size with obvious renal pathologies. RI, PPT and AUC all increased, and PSI and Grad decreased significantly in I/R and dexmedetomidine groups (P<0.05). Compared with I/R group, obvious improvement of the renal size and renal pathologies were observed in dexmedetomidine group, which showed significantly decreased RI, PPT and AUC and increased PSI and Grad (P<0.05).

Conclusion: CEUS combined with the time-intensity curve parameters allows quantitative and dynamic analysis of the protective effects of dexmedetomidine on microcirculatory perfusion in rabbits with renal I/R injury.

Download full-text PDF

Source

Publication Analysis

Top Keywords

i/r injury
12
renal
10
microcirculatory perfusion
8
perfusion rabbits
8
rabbits renal
8
renal ischemia/reperfusion
8
control group
8
dexmedetomidine group
8
group rabbits
8
renal size
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!