An ethylene glycol promoted catalyst-free practically efficient and sustainable approach has been developed for the synthesis of several benzylidene-bis-(4-hydroxycoumarin)s and 4,[Formula: see text]-(arylmethylene)-bis(3-methyl-1-phenyl-1H-pyrazol-5-ol)s by the pseudo three-component reaction of an aldehyde with 4-hydroxycoumarin and 3-methyl-1-phenylpyrazol-5-one, respectively. Inexpensive, non-toxic, and easily available ethylene glycol used as the reaction solvent and promoter renders an efficient protocol in terms of catalyst-free reaction conditions, short reaction time, high yield, practical utility, and green approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11030-016-9673-z | DOI Listing |
J Phys Chem Lett
January 2025
Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States.
Ethylene glycol dinitrate (EGDN) is a nitrate ester explosive widely used in military ordnance and missile systems. This study investigates the decomposition dynamics of the EGDN cation using a comprehensive approach that combines femtosecond time-resolved mass spectrometry (FTRMS) experiments with electronic structure and molecular dynamics computations. We identify three distinct dissociation time scales for the metastable EGDN cation of approximately 40-60 fs, 340-450 fs, and >2 ps.
View Article and Find Full Text PDFAnal Methods
November 2017
College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China.
A novel method was established using a restricted access material combined with a molecularly imprinted polymer (RAM-MIP) as the sorbent material in solid phase extraction (SPE) for clean-up of α-endosulfan, β-endosulfan, endosulfate, endosulfan-ether, endosulfan lactone, heptachlor, heptachlor--epoxide, and heptachlor--epoxide in pork and gas chromatography (GC) for determination. The RAM-MIP was prepared by precipitation polymerization by using endosulfan as the template, methacrylic acid (MAA) as the monomer, glycidyl methacrylate (GMA) as the pro-hydrophilic co-monomer, ethylene glycol dimethacrylate (EGDMA) as the crosslinker, azobisisobutyronitrile (AIBN) as the initiator, and toluene as the porogen. Ultraviolet spectroscopy (UV) and H-nuclear magnetic resonance (H-NMR) analysis verified that MAA interacted specifically with endosulfan in a ratio of 1 : 1 in the pre-polymerization solution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
We report the assembly of poly(ethylene glycol) nanoparticles (PEG NPs) and optimize their surface chemistry to minimize the formation of protein coronas and immunogenicity for improved biodistribution. PEG NPs cross-linked with disulfide bonds are synthesized utilizing zeolitic imidazolate framework-8 NPs as the templates, which are subsequently modified with PEG molecules with different end groups (carboxyl, methoxy, or amino) to vary the surface chemistry. Among the modifications, the amino and residual carboxyl groups form a pair of zwitterionic structures on the surface of PEG NPs, which minimize the adsorption of proteins (e.
View Article and Find Full Text PDFChem Sci
January 2025
Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay 91400 Orsay France +33-180006081.
The synthesis of degradable polymer prodrug nanoparticles is still a challenge to be met, which would make it possible to remedy both the shortcomings of traditional formulation of preformed polymers (, low nanoparticle concentrations) and those of the physical encapsulation of drugs (, burst release and poor drug loadings). Herein, through the combination of radical ring-opening polymerization (rROP) and polymerization-induced self-assembly (PISA) under appropriate experimental conditions, we report the successful preparation of high-solid content, degradable polymer prodrug nanoparticles, exhibiting multiple drug moieties covalently linked to a degradable vinyl copolymer backbone. Such a rROPISA process relied on the chain extension of a biocompatible poly(ethylene glycol)-based solvophilic block with a mixture of lauryl methacrylate (LMA), cyclic ketene acetal (CKA) and drug-bearing methacrylic esters by reversible addition fragmentation chain transfer (RAFT) copolymerization at 20 wt% solid content.
View Article and Find Full Text PDFEndocrinology
January 2025
Laboratory of Nutritional Biochemistry, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
The secretion of glucagon-like peptide-1 (GLP-1) is promoted by various nutrients, and glucose and fructose stimulate GLP-1 secretion via intracellular metabolism. D-Allulose (allulose), a non-metabolizable epimer of D-fructose, is also effective in stimulating GLP-1 secretion, although its underlying mechanism remains unclear. We previously observed intestinal distension after the oral administration of allulose, accompanied by increased GLP-1 secretion in rats, possibly because of the low or slow absorbability of allulose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!