All-Optical Implementation of the Ant Colony Optimization Algorithm.

Sci Rep

Centre for Disruptive Photonic Technologies, TPI, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.

Published: May 2016

We report all-optical implementation of the optimization algorithm for the famous "ant colony" problem. Ant colonies progressively optimize pathway to food discovered by one of the ants through identifying the discovered route with volatile chemicals (pheromones) secreted on the way back from the food deposit. Mathematically this is an important example of graph optimization problem with dynamically changing parameters. Using an optical network with nonlinear waveguides to represent the graph and a feedback loop, we experimentally show that photons traveling through the network behave like ants that dynamically modify the environment to find the shortest pathway to any chosen point in the graph. This proof-of-principle demonstration illustrates how transient nonlinearity in the optical system can be exploited to tackle complex optimization problems directly, on the hardware level, which may be used for self-routing of optical signals in transparent communication networks and energy flow in photonic systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879568PMC
http://dx.doi.org/10.1038/srep26283DOI Listing

Publication Analysis

Top Keywords

all-optical implementation
8
optimization algorithm
8
implementation ant
4
ant colony
4
optimization
4
colony optimization
4
algorithm report
4
report all-optical
4
implementation optimization
4
algorithm famous
4

Similar Publications

Nonreciprocal scattering and unidirectional cloaking in nonlinear nanoantennas.

Nanophotonics

August 2024

Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY 10031, USA.

Reciprocal scatterers necessarily extinguish the same amount of incoming power when excited from opposite directions. This property implies that it is not possible to realize scatterers that are transparent when excited from one direction but that scatter and absorb light for the opposite excitation, limiting opportunities in the context of asymmetric imaging and nanophotonic circuits. This reciprocity constraint may be overcome with an external bias that breaks time-reversal symmetry, posing however challenges in terms of practical implementations and integration.

View Article and Find Full Text PDF
Article Synopsis
  • The rise of modern telecommunication technologies, like 5G and the Internet-of-Things (IoT), has significantly increased data generation and the demand for advanced data processing capabilities.
  • Researchers introduced a microwave photonic (MWP) processing unit that uses elemental antimony to create a compact all-optical RF filter designed to operate as a low-pass filter with a bandwidth of 300 kHz.
  • The study demonstrates the filter's use as an envelope detector for demodulating signals and discusses potential methods for achieving tunable bandwidth.
View Article and Find Full Text PDF

Melting-free integrated photonic memory with layered polymorphs.

Nanophotonics

May 2024

Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA.

Chalcogenide-based nonvolatile phase change materials (PCMs) have a long history of usage, from bulk disk memory to all-optic neuromorphic computing circuits. Being able to perform uniform phase transitions over a subwavelength scale makes PCMs particularly suitable for photonic applications. For switching between nonvolatile states, the conventional chalcogenide phase change materials are brought to a melting temperature to break the covalent bonds.

View Article and Find Full Text PDF

Optical neural networks (ONNs) are custom optical circuits promising a breakthrough in low-power, parallelized, and high-speed hardware, for the growing demands of artificial intelligence applications. All-optical implementation of ONNs has proven burdensome chiefly due to the lack of optical devices that can emulate the neurons' non-linear activation function, thus forcing hybrid optical-electronic implementations. Moreover, ONNs suffer from a large footprint in comparison to their electronic (CMOS-based) counterparts.

View Article and Find Full Text PDF

The generation and structural characteristics of random speckle patterns impact the implementation and imaging quality of computational ghost imaging. Their modulation is limited by traditional electronic hardware. We aim to address this limitation using the features of an all-optical neural network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!