Recent findings have shown that microbial nitrogen flow and digestible energy of diets are increased when urea is combined with a slow-release urea (SRU) in diets with a starch to acid detergent fibre ratio (S:F) 4:1. This affect is attributable to enhanced synchrony between ruminal N availability for microbial growth and carbohydrate degradation. To verify the magnitude of this effects on lamb performance, an experiment was conducted to evaluate the effects of combining urea and a SRU in diets containing S:F ratios of 3:1, 4:1, or 5:1 on performance, dietary energetics and carcass characteristics of finishing lambs. For that, 40 Pelibuey×Katahdin lambs (36.65±3 kg) were assigned to one of five weight groupings in 20 pens (5 repetition/treatments). The S:F ratio in the diet was manipulated by partially replacing the corn grain and dried distiller's grain with solubles by forage (wheat straw) and soybean meal to reach S:F ratios of 3:1, 4:1 or 5:1. An additional treatment of 4:1 S:F ratio with 0.8% urea as the sole source of non-protein nitrogen was used as a reference for comparing the effect of urea combination conventional urea at the same S:F ratio. There were no treatment effects on dry matter intake (DMI). Compared the urea combination vs urea at the same S:F ratio, urea combination increased (p<0.01) average daily gain (ADG, 18.3%), gain for feed (G:F, 9.5%), and apparent energy retention per unit DMI (8.2%). Irrespective of the S:F ratio, the urea combination improved the observed-to-expected dietary ratio and apparent retention per unit DMI was maximal (quadratic effect, p≤0.03) at an S:F ratio of 4:1, while the conventional urea treatment did not modify the observed-to-expected net energy ratio nor the apparent retention per unit DMI at 4:1 S:F ratio. Urea combination group tended (3.8%, p = 0.08) to have heavier carcasses with no effects on the rest of carcass characteristics. As S:F ratio increased, ADG, G:F, dietary net energy, carcass weight, dressing percentage and (LM) area increased linearly (p≤0.02). Combining urea and a slow-release urea product results in positive effects on growth performance and dietary energetics, but the best responses are apparently observed when there is a certain proportion (S:F ratio = 4:1) of starch to acid detergent fibre in the diet.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088420PMC
http://dx.doi.org/10.5713/ajas.16.0013DOI Listing

Publication Analysis

Top Keywords

urea combination
12
urea
11
effects combining
8
slow-release urea
8
performance dietary
8
dietary energetics
8
energetics carcass
8
carcass characteristics
8
diets starch
8
starch acid
8

Similar Publications

Article Synopsis
  • The study examined how adding nitrogen fertilizers affects the remobilization of cadmium in rice fields, highlighting increased cadmium levels in rice due to ammonia nitrogen (NH-N) compared to nitrogen (NO-N).
  • Organic acids secreted by rice roots, particularly under NH-N treatment, were found to play a significant role in increasing soluble cadmium content and impacting microbial community functions.
  • The research suggests a complex interaction between nutrient application, cadmium levels, and microbial dynamics that could elevate cadmium exposure through rice consumption.
View Article and Find Full Text PDF

Hepatocellular carcinoma () is one of the leading causes of cancer deaths due to its late diagnosis and restricted therapeutic options. Therefore, the search for appropriate alternatives to commonly applied therapies remains an area of high clinical need. Here we investigated the therapeutic potential of the glucosylceramide synthase (GCS) inhibitor Genz-123346 and the cationic amphiphilic drug aripiprazole on the inhibition of Huh7 and Hepa 1-6 hepatocellular cancer cell and tumor microsphere growth.

View Article and Find Full Text PDF

Bio-nanomaterials are gaining increasing attention due to their renewable and eco-friendly characteristics. Among these, nanocrystalline cellulose (NCC) stands out as one of the most advanced materials for applications in food, healthcare, composite production, and beyond. In this study, NCC was successfully extracted from cotton-based textile waste using a combination of chemical and mechanical methods.

View Article and Find Full Text PDF

Combining Controlled-Release and Normal Urea Enhances Rice Grain Quality and Starch Properties by Improving Carbohydrate Supply and Grain Filling.

Plants (Basel)

January 2025

Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China.

Controlled-release nitrogen fertilizers are gaining popularity in rice ( L.) cultivation for their ability to increase yields while reducing environmental impact. Grain filling is essential for both the yield and quality of rice.

View Article and Find Full Text PDF

Ammonia (NH) volatilization caused by urea application has negative implications for human health, environmental quality, and the value of nitrogen fertilizers. It remains to be investigated how management strategies should be adopted to not only reduce NH volatilization but also improve nitrogen use efficiency (NUE) in the agriculture industry at present. Hence, a two-year field trial, including subplots, was conducted to simultaneously evaluate the effects of mulching treatments (NM: non-mulching; SM: straw mulching) and different fertilizer treatments (U: urea; U + NBPT: urea plus 1% N-(n-butyl) thiophosphoric triamide; U + CRU: the mixture of urea and controlled-release urea at a 3:7 ratio; U + OF: urea plus commercial organic fertilizer at a 3:7 ratio) on NH volatilization, crop production, and NUE in an oilseed rape-maize rotation system in the sloping farmland of purple soil in southwestern China between 2021 and 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!