Emerging and re-emerging infectious diseases caused by RNA viruses pose a critical public health threat. Next generation sequencing (NGS) is a powerful technology to define genomic sequences of the viruses. Of particular interest is the use of whole genome sequencing (WGS) to perform phylogeographic analysis, that allows the detection and tracking of the emergence of viral infections. Hantaviruses, Bunyaviridae, cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) in humans. We propose to use WGS for the phylogeographic analysis of human hantavirus infections. A novel multiplex PCR-based NGS was developed to gather whole genome sequences of Hantaan virus (HTNV) from HFRS patients and rodent hosts in endemic areas. The obtained genomes were described for the spatial and temporal links between cases and their sources. Phylogenetic analyses demonstrated geographic clustering of HTNV strains from clinical specimens with the HTNV strains circulating in rodents, suggesting the most likely site and time of infection. Recombination analysis demonstrated a genome organization compatible with recombination of the HTNV S segment. The multiplex PCR-based NGS is useful and robust to acquire viral genomic sequences and may provide important ways to define the phylogeographical association and molecular evolution of hantaviruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879520 | PMC |
http://dx.doi.org/10.1038/srep26017 | DOI Listing |
BMC Plant Biol
January 2025
College of Life Science, Henan Agricultural University, Zhengzhou, China.
Background: Assessing the current status and identifying the mechanisms threatening endangered plants are significant challenges and fundamental to biodiversity conservation, particularly for protecting Tertiary relict trees and plant species with extremely small populations (PSESP). Ulmus elongata (Ulmus, Ulmaceae) with high values for the ornamental application, is a Tertiary relict tree species and one of the members from PSESP in China. Currently, the wild populations of U.
View Article and Find Full Text PDFSci Rep
January 2025
Senckenberg Deutsches Entomologisches Institut, Systematik und Biogeographie, Eberswalder Str. 90, 15374, Müncheberg, Germany.
The genus Erebia comprises numerous species in Europe. Due to preference of cold environments, most species have disjunct distributions in the European mountain systems. However, their biogeographical patterns may differ significantly.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Dipartimento di Scienze Linguistiche e Letterature Straniere, Università Cattolica del Sacro Cuore, Largo Gemelli 1, 20123 Milan, Italy.
Eastern Finnic populations, including Karelians, Veps, Votes, Ingrians, and Ingrian Finns, are a significant component of the history of Finnic populations, which have developed over ~3 kya. Yet, these groups remain understudied from a genetic point of view. In this work, we explore the gene pools of Karelians (Northern, Tver, Ludic, and Livvi), Veps, Ingrians, Votes, and Ingrian Finns using Y-chromosome markers (N = 357) and genome-wide autosomes (N = 67) and in comparison with selected Russians populations of the area (N = 763).
View Article and Find Full Text PDFAm J Bot
January 2025
Department of Biology, University of Wisconsin, La Crosse, La Crosse, WI, USA.
Premise: Phelipanche ramosa is an economically damaging parasitic plant that has been reported in North America since the late 1800s. While this species comprises a variety of genetically distinct host races in its native range, the genetic composition of adventive populations in the New World remains unexplored. On the basis of morphological and ecological variation, some have suggested that the closely related P.
View Article and Find Full Text PDFArch Virol
January 2025
Department of Virology, National Institute of Health (NIH), 45500, Park Rd, Chak Shahzad, Islamabad, Pakistan.
Pakistan has experienced a total of six COVID-19 waves throughout the pandemic, each driven by distinct SARS-CoV-2 lineages. This study explores the introduction of Omicron lineage BA.4 into Pakistan, which contributed to the sixth wave between June and September 2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!