Oligonucleotides containing 2'-O-methylated 5-methylisocytidine (3) and 2'-O-propargyl-5-methylisocytidine (4) as well as the non-functionalized 5-methyl-2'-deoxyisocytidine (1b) were synthesized. MALDI-TOF mass spectra of oligonucleotides containing 1b are susceptible to a stepwise depyrimidination. In contrast, oligonucleotides incorporating 2'-O-alkylated nucleosides 3 and 4 are stable. This is supported by acid catalyzed hydrolysis experiments performed on nucleosides in solution. 2'-O-Alkylated nucleoside 3 was synthesized from 2'-O-5-dimethyluridine via tosylation, anhydro nucleoside formation and ring opening. The corresponding 4 was obtained by direct regioselective alkylation of 5-methylisocytidine (1d) with propargyl bromide under phase-transfer conditions. Both compounds were converted to phosphoramidites and employed in solid-phase oligonucleotide synthesis. Hybridization experiments resulted in duplexes with antiparallel or parallel chains. In parallel duplexes, methylation or propargylation of the 2'-hydroxyl group of isocytidine leads to destabilization while in antiparallel DNA this effect is less pronounced. 2'-O-Propargylated 4 was used to cross-link nucleosides and oligonucleotides to homodimers by a stepwise click ligation with a bifunctional azide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6ob00622a | DOI Listing |
RSC Adv
December 2024
The United Graduate School of Agriculture Science (UGSAS), Gifu University Japan +81-58-293-2919 +81-58-293-2919.
Owing to the increased public interest and advances in chemical modifications, the approval of antisense therapeutics, a class of mRNA-targeting DNA-based oligonucleotide therapeutics, has accelerated in recent years. It was previously reported that siRNAs with several 4'--α-aminoethoxy-2'--methyl-uridine (4AEoU) analogs could maintain moderate thermal stability similar to the native ones while showing robust nuclease stability. In this study, we further expanded the application of 4AEo modification to antisense therapeutics and achieved superior thermal stability by adding the uracil 5-propynyl modification.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, 30322, USA.
Loss of ribosomal RNA (rRNA) modifications incorporated by the intrinsic methyltransferase TlyA results in reduced sensitivity to tuberactinomycin antibiotics such as capreomycin. However, the mechanism by which rRNA methylation alters drug binding, particularly at the distant but functionally more important site in 23S rRNA Helix 69 (H69), is currently unknown. We determined high-resolution cryo-electron microscopy structures of the 70S ribosome with or without the two ribose 2'-O-methyl modifications incorporated by TlyA.
View Article and Find Full Text PDFBiochemistry
December 2024
LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
Nucleic acid mimics (NAMs) have demonstrated high potential as antibacterial drugs. However, very few studies have assessed their possible diffusion across the bacterial envelope. In this work, we studied NAMs' diffusion in lipid bilayer systems that mimic the bacterial outer membrane using molecular dynamics (MD) simulations.
View Article and Find Full Text PDFJ Org Chem
December 2024
Center for Advanced Technology, Adam Mickiewicz University, Poznań 61-614, Poland.
DNA photo-crosslinking reactions occur widely in biological systems and are often used as valuable tools in molecular biology. In this article, we demonstrate the application of an oligonucleotide 5-fluoro-2'-O-methyl-4-thiouridine ()-containing probe for the fluorescent detection of specific DNA sequences. The design of the probe was predicated on studies of agents that could adversely affect its efficiency.
View Article and Find Full Text PDFBiochemistry
November 2024
Department of Chemistry, Stanford University, Stanford, California 94305, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!