Local recurrence following surgery in cancer treatment remains a major clinical challenge. To increase antitumor activity but maintain toxicity in an acceptable level in prevention of local cancer recurrence, we demonstrated a dual drug-loaded multilayered fiber mats strategy, in which DCA and oxaliplatin were co-electrospun into the distinct layer of resultant fabrics and the oxaliplatin-loaded fibers layer was sealed between the basement film layer and other two fibers layers. The dual drug-loaded multilayered fiber mats exhibit time-programmed dual release behavior and synergistic effect upon cancer cells. Nontoxic DCA selectively promotes apoptosis of cancer cells through modulating cellular metabolism, and oxaliplatin subsequently kills the remained cancer cells in a low concentration. After implantation on the resection margin of cervical carcinoma on a murine model, the dual drug-loaded multilayered fiber mats displayed enhanced anti-recurrence efficacy and decreased side toxic effects over 30days compared with drug-loaded monolayered fiber mats. The time-programmed combination of DCA and oxaliplatin within multilayered nanofiber mats appears to be a promising strategy for local cancer treatment following resection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2016.05.046 | DOI Listing |
Antioxidants (Basel)
December 2024
Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
This study focuses on developing an active and biodegradable packaging using electrospinning, with polylactic acid (PLA) as the matrix and bamboo leaf extract (BLE) as the antioxidant compound. The research systematically evaluates the relationship among process parameters, material properties, and structure. The electrospun membranes were produced using different BLE contents (10 wt%, 20 wt%, 30 wt%, and 40 wt%) and characterized by their morphology, mechanical properties, wettability, and antioxidant activity.
View Article and Find Full Text PDFBiopolymers
January 2025
Department of Textile Engineering, Dhaka University of Engineering and Technology, Gazipur, Dhaka, Bangladesh.
The antibacterial nanofibrous mat is crucial in biomedicine as it enhances infection control, expedites wound healing, and mitigates health hazards by decreasing antibiotic usage. A novel synergistic antibacterial and hydrophilic nanofibrous mat successfully fabricated by solution electrospinning from polyvinyl alcohol (PVA) incorporated Croton bonplandianum Baill (CBB) leaves extract. Antioxidant-enriched leaf extract of the CBB plant was integrated with PVA in varying proportions of 30% (CBB-30), 40% (CBB-40), and 50% (CBB-50) to manufacture antibacterial nanofibrous mat.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
The solid-phase adsorption principles and fundamental mechanism of isobutyric acid, 1-octen-3-ol, and octanal (three key off-odor compounds of oyster peptides) were explored using electrospun octenyl succinylated starch-pullulan (OSS-PUL) nanofiber mat. The nanofiber mats had selective adsorption behaviors as indicated by the selective adsorption rates of isobutyric acid, 1-octen-3-ol, and octanal, which were 94.96%, 85.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey. Electronic address:
Currently, the primary composition of fibrous filter materials predominantly relies on synthetic polymers derived from petroleum. The utilization of these polymers, as well as their production process, has a negative impact on the environment. Consequently, the adoption of air filter media fabricated from natural fibers would yield significant environmental benefits.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2024
Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy.
Mechanofluorescent polymers represent a promising class of materials exhibiting fluorescence changes in response to mechanical stimuli. One approach to fabricating these polymers involves incorporating aggregachromic dyes, whose emission properties are governed by the intermolecular distance, which can, in turn, be readily altered by microstructural changes in the surrounding polymer matrix during mechanical deformation. In this study, a mechanofluorescent additive featuring excimer-forming oligo(p-phenylene vinylene) dyes (tOPV) is incorporated into electrospun polyurethane fibers, producing mats of fibers with diameters ranging from 300 to 700 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!