Molecular diagnostic toolkit for Rhizophagus irregularis isolate DAOM-197198 using quantitative PCR assay targeting the mitochondrial genome.

Mycorrhiza

Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada.

Published: October 2016

Rhizophagus irregularis (previously named Glomus irregulare) is one of the most widespread and common arbuscular mycorrhizal fungal (AMF) species. It has been recovered worldwide in agricultural and natural soils, and the isolate DAOM-197198 has been utilized as a commercial inoculant for two decades. Despite the ecological and economical importance of this taxon, specific markers for quantification of propagules by quantitative real-time PCR (qPCR) are extremely limited and none have been rigorously validated for quality control of manufactured products such as biofertilizers. From the sequencing of 14 complete AMF mitochondrial (mt) genomes, a qPCR assay using a hydrolysis probe designed in the single copy cox3-rnl intergenic region was tested and validated to specifically and accurately quantify the spores of R. irregularis isolate DAOM-197198. Specificity tests were performed using standard PCR and qPCR, and results clearly showed that the primers specifically amplified the isolate DAOM-197198, yielding a PCR product of 106 bp. According to the qPCR analyses on spores produced in vitro, the average copy number of mt genomes per spore was 3172 ± 304 SE (n = 6). Quantification assays were successfully undertaken on known and unknown samples in liquid suspensions and commercial dry formulations to show the accuracy, precision, robustness, and reproducibility of the qPCR assay. This study provides a powerful molecular toolkit specifically designed to quantify spores of the model AMF isolate DAOM-197198. The approach of molecular toolkit used in our study could be applied to other AMF taxa and will be useful to research institutions and governmental and industrial laboratories running routine quality control of AMF-based products.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00572-016-0708-1DOI Listing

Publication Analysis

Top Keywords

isolate daom-197198
20
rhizophagus irregularis
8
irregularis isolate
8
pcr qpcr
8
quality control
8
qpcr assay
8
quantify spores
8
molecular toolkit
8
isolate
5
daom-197198
5

Similar Publications

Molecular diagnostic toolkit for Rhizophagus irregularis isolate DAOM-197198 using quantitative PCR assay targeting the mitochondrial genome.

Mycorrhiza

October 2016

Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada.

Rhizophagus irregularis (previously named Glomus irregulare) is one of the most widespread and common arbuscular mycorrhizal fungal (AMF) species. It has been recovered worldwide in agricultural and natural soils, and the isolate DAOM-197198 has been utilized as a commercial inoculant for two decades. Despite the ecological and economical importance of this taxon, specific markers for quantification of propagules by quantitative real-time PCR (qPCR) are extremely limited and none have been rigorously validated for quality control of manufactured products such as biofertilizers.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi are symbionts of most plants, increasing plant growth and diversity. The model AM fungus Rhizophagus irregularis (isolate DAOM 197198) exhibits low within-fungus polymorphism. In contrast, another study reported high within-fungus variability.

View Article and Find Full Text PDF

Intraisolate mitochondrial genetic polymorphism and gene variants coexpression in arbuscular mycorrhizal fungi.

Genome Biol Evol

December 2014

Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada

Arbuscular mycorrhizal fungi (AMF) are multinucleated and coenocytic organisms, in which the extent of the intraisolate nuclear genetic variation has been a source of debate. Conversely, their mitochondrial genomes (mtDNAs) have appeared to be homogeneous within isolates in all next generation sequencing (NGS)-based studies. Although several lines of evidence have challenged mtDNA homogeneity in AMF, extensive survey to investigate intraisolate allelic diversity has not previously been undertaken.

View Article and Find Full Text PDF

Detection of a transient mitochondrial DNA heteroplasmy in the progeny of crossed genetically divergent isolates of arbuscular mycorrhizal fungi.

New Phytol

October 2013

Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.

Nonself fusion and nuclear genetic exchange have been documented in arbuscular mycorrhizal fungi (AMF), particularly in Rhizophagus irregularis. However, mitochondrial transmission accompanying nonself fusion of genetically divergent isolates remains unknown. Here, we tested the hypothesis that mitochondrial DNA (mtDNA) heteroplasmy occurs in the progeny of spores, obtained by crossing genetically divergent mtDNAs in R.

View Article and Find Full Text PDF

Intra-isolate genome variation in arbuscular mycorrhizal fungi persists in the transcriptome.

J Evol Biol

July 2010

Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC H1X 2B2, Canada.

Arbuscular mycorrhizal fungi (AMF) are heterokaryotes with an unusual genetic makeup. Substantial genetic variation occurs among nuclei within a single mycelium or isolate. AMF reproduce through spores that contain varying fractions of this heterogeneous population of nuclei.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!