This paper deals with the influence of velocity on the postural adjustments that occur during the course of a voluntary movement, that is to say, simultaneous postural adjustments (SPA). To this aim, a pointing task performed at different velocities (V) was considered. Upper limb kinematics and body kinetics were recorded. Using a 2-DOF model, the body was divided into two parts: the right upper limb (termed the "focal" chain) and the rest of the body (termed the "postural" chain). This model allowed us to calculate the kinetics of both subsystems (-F x and [Formula: see text]), with one corresponding to the resultant action on the shoulder (AoSh: -F x) and the other to the resultant reaction of the shoulder (RoSh: [Formula: see text]). The influence of pointing velocity on peak amplitudes and durations was evaluated, as was their instantaneous relationship ("Lissajous ellipse"). The results showed that RoSh and AoSh display similar diphasic profiles, whose amplitude and duration vary with movement velocity. In addition, RoSh is in phase advance of AoSh, the advance being all the shorter as the focal movement velocity becomes faster. Finally, SPA appears to play a dual role, which includes a propulsive action during upper limb acceleration and body stabilization during deceleration. These new findings strengthen the hypothesis that the postural chain is programmed according to task velocity in the same way as the focal chain and that both are coping in order to make the task more efficient.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-016-4683-8DOI Listing

Publication Analysis

Top Keywords

postural adjustments
12
upper limb
12
simultaneous postural
8
adjustments spa
8
[formula text]
8
movement velocity
8
velocity
5
spa programmed
4
programmed function
4
function pointing
4

Similar Publications

Does Body Postural Configuration Affect Upper Limb Performance During Point-to-Point Hand Movements?

J Mot Behav

January 2025

Department of Physical Therapy, Stanley Steyer School of Health Professions, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.

Adopting a postural configuration may be regarded as preparation for the performance of an upcoming movement. However, it is unclear how different postural configurations affect motor performance. The aim of the current study was to examine how body posture - sitting versus standing - influences fast and accurate planar point-to-point hand movements.

View Article and Find Full Text PDF

Purpose: To compare health-related quality-of-life (HRQOL) between children with hyperkyphosis and idiopathic scoliosis using 9-item Oswestry Disability Index (ODI-9) and Patient Reported Outcome Measurement Information System (PROMIS) Pain Interference, Mobility, and Anxiety.

Methods: Children with hyperkyphosis, idiopathic scoliosis, and controls with no structural diagnosis ages 10-18 years who completed the PROMIS Pediatric Pain Interference, Mobility, and Anxiety domains were retrospectively evaluated from April 2021 to June 2023. Comparisons were made between hyperkyphosis, idiopathic scoliosis, and control groups.

View Article and Find Full Text PDF

Background And Purpose: Anticipatory postural adjustments (APA) and compensatory postural adjustments (CPA) have played a vital role in postural control since early childhood, which is critical to accomplishing activities in daily life. However, literature indicated dissimilarities and inconsistencies in APA and CPA analysis in sitting and standing positions in children with Cerebral Palsy (CP). Thus, this study analyzed the changes in postural control (APA and CPA) through the postural muscles [rectus abdominis (RA) and erector spinae (ES)] in both standing and sitting positions during functional activities (grasping a ball) in children with CP.

View Article and Find Full Text PDF

Overcoming the cognition-reality gap in robot-to-human handovers with anisotropic variable force guidance.

Comput Struct Biotechnol J

December 2024

The State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.

Object handover is a fundamental task for collaborative robots, particularly service robots. In in-home assistance scenarios, individuals often face constraints due to their posture and declining physical functions, necessitating high demands on robots for flexible real-time control and intuitive interactions. During robot-to-human handovers, individuals are limited to making perceptual judgements based on the appearance of the object and the consistent behaviour of the robot.

View Article and Find Full Text PDF

Isotemporal substitution of physical activity patterns and sitting time with obesity indicators among workers in São Paulo.

Sci Rep

January 2025

Centro de Estudos do Laboratório de Aptidão Física de São Caetano do Sul (CELAFISCS), São Caetano do Sul, SP, Brasil.

This study aimed to evaluate the association between substituting 10, 30, and 60 min/day of physical activity and sitting time with obesity indicators among workers. It is a cross-sectional study involving 394 adults (76.6% women) from São Paulo, Brazil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!