Superresolution fluorescence microscopy of multiple fluorophores still requires development. Here we present simultaneous three-colour stimulated emission depletion (STED) nanoscopy relying on a single STED beam at 620 nm. Toggling the STED beam between two or more power levels ("multilevelSTED") optimizes resolution and contrast in all colour channels, which are intrinsically co-aligned and well separated. Three-colour recording is demonstrated by imaging the nanoscale cytoskeletal organization in cultured hippocampal neurons. The down to ~35 nm resolution identified periodic actin/betaII spectrin lattices along dendrites and spines; however, at presynaptic and postsynaptic sites, these patterns were found to be absent. Both our multicolour scheme and the 620 nm STED line should be attractive for routine STED microscopy applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879624PMC
http://dx.doi.org/10.1038/srep26725DOI Listing

Publication Analysis

Top Keywords

sted nanoscopy
8
sted beam
8
sted
6
multicolour multilevel
4
multilevel sted
4
nanoscopy actin/spectrin
4
actin/spectrin organization
4
organization synapses
4
synapses superresolution
4
superresolution fluorescence
4

Similar Publications

Conjugated oligoelectrolytes (COEs) are lipid bilayer spanning optical reporters that hold promise for delineating spatiotemporal changes in subcellular compartments. However, their ability to probe a broader range of biological processes remains restricted due to the lack of environmentally-responsive chemical functionalities. Herein, the study reports a novel COE, namely COE-KP, for monitoring spatiotemporal changes in the endolysosomal vesicles.

View Article and Find Full Text PDF

Most embedding media for live and fixed samples were not designed for microscopy and have issues including long polymerization times, peak of toxicity toward the sample during the sol-gel transition, and irreversibility of this transition. Gels derived from biological sources are widely used in microscopy, but their precise composition is ill-defined and can vary between batches. Non-physiological temperatures and/or specific enzymatic solutions are often needed to revert the gel back to the sol state to allow sample recovery.

View Article and Find Full Text PDF

Microscopes generally achieve better 2D imaging compared to 3D, and super-resolution microscopes often aggravate such axial-lateral resolution mismatch. A prime example is vortex phase-based stimulated emission depletion (STED) fluorescence microscopy, which only narrows the point-spread function laterally, thereby increasing the point-spread function (PSF) anisotropy. In this study, we developed a semi-analytical theory based on the Nijboer-Zernike expansion, developed a set of metrics and performed experiments to establish the merits of the alternative, bivortex phase-based, coherent-hybrid STED.

View Article and Find Full Text PDF

Water-soluble AIE photosensitizer in short-wave infrared region for albumin-enhanced and self-reporting phototheranostics.

Biomaterials

March 2025

Department of Chemistry, and Department of Chemical and Biological Engineering, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, 999077, PR China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, PR China. Electronic address:

Organic photosensitizers (PSs) play important roles in phototheranostics, and contribute to the fast development of precision medicine. However, water-soluble and highly emissive organic PSs, especially those emitting in the short-wave infrared region (SWIR), are still challenging. Also, it's difficult to prepare self-reporting PSs for visualizing the treatment via stimulated emission depletion (STED) nanoscopy.

View Article and Find Full Text PDF

Mitochondrial STED Imaging and Membrane Potential Monitoring with a Cationic Molecular Probe.

Small Methods

December 2024

Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

Mitochondria are essential organelles that not only undergo dynamic morphological changes but also exhibit functional activities such as mitochondrial membrane potential (MMP). While super-resolution techniques such as stimulated emission depletion (STED) nanoscopy can visualize the ultrastructure of mitochondria and the MMP probe can monitor mitochondria function, few dyes meet both demands. Here, a small molecule (MitoPDI-90) based on perylene diimide with cationic groups is reported and used for mitochondrial STED imaging and MMP indication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!