The ability of modified dietary fiber (MDF) generated from cassava pulp to modulate the bioaccessibility and intestinal absorption of heavy metals may be helpful to mitigate health risk associated with select foods including select fish high in methyl mercury. Using a coupled in vitro digestion/Caco-2 human intestinal cell model, the reduction of fish mercury bioaccessibility and intestinal uptake by MDF was investiaged. MDF was prepared from cassava pulp, a byproduct of tapioca production. The highest yield (79.68%) of MDF was obtained by enzymatic digestion with 0.1% α-amylase (w/v), 0.1% amyloglucosidase (v/v) and 1% neutrase (v/v). MDF and fish tissue were subjected to in vitro digestion and results suggest that MDF may reduce mercury bioaccessibility from fish to 34% to 85% compared to control in a dose-dependent manner. Additionally, accumulation of mercury from digesta containing fish and MDF was only modestly impacted by the presence of MDF. In conclusion, MDF prepared from cassava pulp may be useful as an ingredient to reduce mercury bioavailability from food such as fish specifically by inhibiting mercury transfer to the bioaccessibile fraction during digestion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.13336 | DOI Listing |
Bioresour Technol
February 2025
School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510006, China. Electronic address:
Clostridium butyricum SCUT 620, a promising biorefinery chassis, has been demonstrated to efficiently utilize monosaccharides, disaccharides, and polysaccharides for butyric acid production. However, the absence of genetic manipulation tools has restricted its further development and application. For the first time, an efficient electroporation method for C.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand; Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand. Electronic address:
Sci Rep
November 2024
School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Muang, Nakhon Ratchasima, 30000, Thailand.
The aim of this study was to determine the effect of replacing soybean meal (SBM) with fermented cassava pulp by Saccharomyces cerevisiae (FCSC) in the diet of growing goats. Growing goats were randomly assigned to five dietary treatments according to replicated 5 × 5 Latin square design. Dietary treatments were five levels of replacement SBM to FCSC at 0, 25, 50, 75, and 100% of crude protein in concentrates.
View Article and Find Full Text PDFTrop Anim Health Prod
October 2024
Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
Animals (Basel)
August 2024
Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand.
This study evaluates the effects of substituting cassava pulp with broken rice and cassava chips in the total mixed ration silage diets of beef cattle on feed composition, ensiling quality, digestibility, and energy utilization. Fifteen Holstein Thai native crossbred (89% × 11% ) steers in the fattening phase, with an average age of 2.5 ± 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!