Pathogenic New World hemorrhagic fever mammarenaviruses (NWM) utilize Glycoprotein 1 (GP1) to target the apical domain of the human transferrin receptor (hTfR) for facilitating cell entry. However, the conservation between their GP1s is low. Considering this and the slow evolutionary progression of mammals compared to viruses, therapeutic targeting of hTfR provides an attractive avenue for cross-strain inhibition and diminishing the likelihood of escape mutants. Aptamers present unique advantages for the development of inhibitors to vial entry, including ease of synthesis, lack of immunogenicity, and potentially cold-chain breaking solutions to diseases endemic to South America. Here, recognizing that in vivo competition with the natural ligand, transferrin (Tf), likely drove the evolution of GP1 to recognize the apical domain, we performed competitive in vitro selections against hTfR-expressing cells with supplemented Tf. The resultant minimized aptamer, Waz, binds the apical domain of the receptor and inhibits infection of human cells by recombinant NWM in culture (EC50 ~400 nmol/l). Aptamer multimerization further enhanced inhibition >10-fold (EC50 ~30 nmol/l). Together, our results highlight the ability to use a competitor to bias the outcome of a selection and demonstrate how avidity effects can be leveraged to enhance both aptamer binding and the potency of viral inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/mtna.2016.32 | DOI Listing |
J Exp Bot
January 2025
Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Universitätsstrasse 2, 8092 Zurich, Switzerland.
The Arabidopsis root apical meristem is an excellent model for studying plant organ growth that involves a coordinated process of cell division, elongation, and differentiation, while each tissue type develops on its own schedule. Among these tissues, the protophloem is particularly important, differentiating early to supply nutrients and signalling molecules to the growing root tip. The OCTOPUS (OPS) protein and its homolog OPS-LIKE 2 (OPL2) are essential for proper root protophloem differentiation and, likely through this role, indirectly promote root growth.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFDiabetes
January 2025
Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan.
Pancreatic cystic changes in adults are increasingly identified through advanced cross-sectional imaging. However, the impact of initial/intra-lobular epithelial remodeling on the local β-cell population remains unclear. In this study, we examined 10 human cadaveric donor pancreases (tail and body regions) via integration of stereomicroscopy, clinical H&E histology, and 3D immunohistochemistry, identifying 36 microcysts (size: 1.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Epithelial cells can become polyploid upon tissue injury, but mechanosensitive cues that trigger this state are poorly understood. Using an Madin Darby Canine Kidney (MDCK) cell knock-out/reconstitution system, we show that α-catenin mutants that alter force-sensitive binding to F-actin or middle (M)-domain promote cytokinesis failure and binucleation, particularly near epithelial wound-fronts. We identified Leucine Zipper Tumor Suppressor 2 (LZTS2), a factor previously implicated in abscission, as a conformation sensitive proximity partner of α-catenin.
View Article and Find Full Text PDFBiol Open
January 2025
Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
Epithelial cell cohesion and barrier function critically depend on α-catenin, an actin-binding protein and essential constituent of cadherin-catenin-based adherens junctions. α-catenin undergoes actomyosin force-dependent unfolding of both actin-binding and middle domains to strongly engage actin filaments and its various effectors; this mechanosensitivity is critical for adherens junction function. We previously showed that α-catenin is highly phosphorylated in an unstructured region that links the mechanosensitive middle and actin-binding domains (known as the P-linker region), but the cellular processes that promote α-catenin phosphorylation have remained elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!