AI Article Synopsis

  • The study emphasizes the importance of dietary fiber's structure in promoting bowel health through enhanced fecal bulking and hydration.
  • Researchers created minimally processed vegetable fibers from swede, broccoli, and asparagus using cold water fragmentation and tested their effects in a rat model.
  • The results showed that these natural vegetable fibers significantly outperformed commercial processed fibers and fermentable polysaccharides in both fecal bulking and hydration, highlighting the necessity of consuming a varied diet rich in whole vegetables, fruits, and grains.

Article Abstract

Dietary fibre-induced faecal bulking and hydration are important contributors to large bowel function and health, and are affected by the dietary fibre structure. To determine faecal bulk-related parameters for vegetable dietary fibres with retained structure, cold water fragmentation of vegetables was used to make minimally processed vegetable fibres (MPVF) from swede, broccoli and asparagus. A valid adult rat model was used to subject the fibres to processes of hind gut fermentation and faecal accumulation similar to those in humans. All the MPVFs had high faecal bulking indexes (FBIs, mean ± sem: wheat bran (reference), 100 ± 6.0; asparagus 168 ± 5.7; swede 135 ± 6.1; broccoli 135 ± 5.9; broccoli rind 205 ± 10.4), and caused large increases in the theoretical colonic water load at 10 g per 100 g diet (increase over baseline (%): wheat bran, 137 ± 8.3; asparagus, 236 ± 25, swede 193 ± 8.8; broccoli 228 ± 12; broccoli rind 223 ± 8.5). Faecal bulking by MPVFs was much greater than by fermentable extracted polysaccharides such as pectin and raftilose, or by commercial fibres made from highly processed cell walls. The results show natural, non-degraded vegetable fibres with retained botanical structure have beneficial effects not provided by structure-less fermentable dietary fibres. Dietary fibre-deficient diets supplemented with prebiotics cannot, therefore, adequately substitute for varied diets containing adequate vegetables, fruits and wholegrain cereals in which fermentation is associated with enough retained structure to conserve physicochemical properties of benefit to colonic function.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5fo01526jDOI Listing

Publication Analysis

Top Keywords

dietary fibres
12
faecal bulking
12
vegetable dietary
8
rat model
8
fibres retained
8
retained structure
8
vegetable fibres
8
wheat bran
8
135 broccoli
8
broccoli rind
8

Similar Publications

One of the biggest public health problems globally is that of iron deficiency anemia. The present research aimed to determine the effect of prebiotics along with iron fortification on iron biomarkers in female anemic rats as some evidence suggests that prebiotics convert increase the solubility of iron, thereby enhancing its absorption. A total of 126 Sprague Dawley rats were fed with sixteen different types of fortified feed containing prebiotics (Inulin + Galacto Oligosaccharides) and Iron Fortificants (Sodium Ferric Ethylenediaminetetraacetate + Ferrous Sulphate).

View Article and Find Full Text PDF

The utilization of exogenous fiber-degrading enzymes in commercial swine diets is a strategy to increase the nutrient and energy density of poorly digestible ingredients. In a prior set of studies, dietary multienzyme blend (MEblend) supplementation increased the apparent total tract digestibility (ATTD) of nutrients, non-starch polysaccharides, and energy in complete high-fibrous gestation diets by 6% when fed to gestating sows. The current study aimed to determine the effects of MEblend (containing xylanase, β-glucanase, cellulase, amylase, protease, pectinase, and invertase activities) supplementation on ATTD of energy and nutrients of individual feedstuffs commonly used in gestating sow diets across major pork-producing regions worldwide, which differ in their fibrous components.

View Article and Find Full Text PDF

Incorporation of anthocyanin into zein nanofibrous films by electrospinning: Structural characterization, functional properties, and ammonia color-responsiveness.

Food Chem X

January 2025

Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.

Green electrospinning for the production of freshness-indicating labels, employing entirely natural biopolymers and pigments, holds significance in the development of intelligent food packaging. This study aimed to prepare zein (Z) fibrous film (FF) incorporated with varying concentrations of anthocyanin (A; 0-0.5 %) through green electrospinning.

View Article and Find Full Text PDF

Saturated fat in an evolutionary context.

Lipids Health Dis

January 2025

Institute of Health, Oslo New University College, Ullevålsveien 76, Oslo, 0454, Norway.

Evolutionary perspectives have yielded profound insights in health and medical sciences. A fundamental recognition is that modern diet and lifestyle practices are mismatched with the human physiological constitution, shaped over eons in response to environmental selective pressures. This Darwinian angle can help illuminate and resolve issues in nutrition, including the contentious issue of fat consumption.

View Article and Find Full Text PDF

Oxidative balance score (OBS) is a composite measures that assess the balance between pro-oxidant and antioxidant factors in an individual's diet and lifestyle, with higher scores indicating greater antioxidant exposure. Despite its potential significance, there is a limited body of research exploring the relationship between OBS and all-cause and cardiovascular disease (CVD) mortality specifically in younger patients with diabetes. We aimed to investigate the possible relationship between OBS and all-cause and CVD mortality in younger patients with diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!