Reprogramming of the Epigenome by MLL1 Links Early-Life Environmental Exposures to Prostate Cancer Risk.

Mol Endocrinol

Center for Translational Cancer Research (Q.W., L.S.T., R.L.Y.W., C.L.W.), Institute of Biosciences and Technology, Texas A&M University System Health Science Center, and Department of Molecular and Cellular Biology (C.E.F., C.C., B.W.O.), Baylor College of Medicine, Houston, Texas 77030; Department of Environmental Health (M.M., J.C., S.-m.H.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45267; Department of Epigenetics and Molecular Carcinogenesis (J.S.), University of Texas MD Anderson Cancer Center, Smithville, Texas 78957; and Department of Biochemistry and Molecular Genetics (A.S.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611.

Published: August 2016

Tissue and organ development is a time of exquisite sensitivity to environmental exposures, which can reprogram developing tissues to increase susceptibility to adult diseases, including cancer. In the developing prostate, even brief exposure to endocrine-disrupting chemicals (EDCs) can increase risk for developing cancer in adulthood, with disruption of the epigenome thought to play a key role in this developmental reprogramming. We find that EDC-induced nongenomic phosphoinositide 3-kinase; (PI3K) signaling engages the histone methyltransferase mixed-lineage leukemia 1 (MLL1), responsible for the histone H3 lysine 4 trimethylation (H3K4me3) active epigenetic mark, to increase cleavage and formation of active MLL1 dimers. In the developing prostate, EDC-induced MLL1 activation increased H3K4me3 at genes associated with prostate cancer, with increased H3K4me3 and elevated basal and hormone-induced expression of reprogrammed genes persisting into adulthood. These data identify a mechanism for MLL1 activation that is vulnerable to disruption by environmental exposures, and link MLL1 activation by EDCs to developmental reprogramming of genes involved in prostate cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965842PMC
http://dx.doi.org/10.1210/me.2015-1310DOI Listing

Publication Analysis

Top Keywords

environmental exposures
12
prostate cancer
12
mll1 activation
12
developing prostate
8
developmental reprogramming
8
increased h3k4me3
8
mll1
6
prostate
5
cancer
5
reprogramming epigenome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!