Low heat resistance of Bacillus sphaericus spores correlated with high protoplast water content.

FEMS Microbiol Lett

Department of Microbiology and Public Health, Michigan State University, East Lansing 48824.

Published: March 1989

The low heat resistance (D100 = 0.554 min, z = 13.4 degrees C) of dormant lysozyme-sensitized spores of Bacillus sphaericus 9602 was correlated with a low protoplast wet density (1.305 g/ml) equivalent to a high protoplast water content (61.0%, wet weight basis). These values for these unusual spores were consistent with those correlated previously in 28 spore types of seven other species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0378-1097(89)90331-5DOI Listing

Publication Analysis

Top Keywords

low heat
8
heat resistance
8
bacillus sphaericus
8
high protoplast
8
protoplast water
8
water content
8
resistance bacillus
4
sphaericus spores
4
spores correlated
4
correlated high
4

Similar Publications

Swin-transformer for weak feature matching.

Sci Rep

January 2025

Department of Computer Science and Technology, Qilu University of Technology, No. 3501 Daxue Road, Jinan, 250300, Shandong, China.

Feature matching in computer vision is crucial but challenging in weakly textured scenes due to the lack of pattern repetition. We introduce the SwinMatcher feature matching method, aimed at addressing the issues of low matching quantity and poor matching precision in weakly textured scenes. Given the inherently significant local characteristics of image features, we employ a local self-attention mechanism to learn from weakly textured areas, maximally preserving the features of weak textures.

View Article and Find Full Text PDF

In New Zealand, the frequency and intensity of marine heatwaves (MHWs) and blooms of the harmful algal species, Alexandrium pacificum, are increasing in areas where there are natural reefs and commercial farms of the mussel, Perna canaliculus. In this study, we assessed the whole organism, tissue and molecular-level response of juvenile (spat) P. canaliculus exposed to these abiotic and biotic stressors, alone and together.

View Article and Find Full Text PDF

The design of electrically conductive textiles appears to be a promising approach to combat the existing challenge of deaths caused by severe cold climates around the globe. However, reports on the scalable fabrication of tolerant conductive textiles maintaining a low electrical resistance with an ability for unperturbed and prolonged performance are scarce. Here, a breathable and wrappable water-repellent conductive textile (water-repellent CT) with electrothermal and photothermal conversion abilities at low external voltage and in weak solar light is introduced, respectively.

View Article and Find Full Text PDF

Mid-infrared thermal radiation has attracted attention due to its wide range of applications. Compared to the static process of thermal emission, if thermal radiation can be dynamically controlled, it would be more suitable for practical applications. Herein, we designed a controllable thermal emitter based on phase change materials.

View Article and Find Full Text PDF

A Fish-Gill-Inspired Biomimetic Multiscale-Ordered Hydrogel-Based Solar Water Evaporator for Highly Efficient Salt-Rejecting Seawater Desalination.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

Solar energy-driven steam generation is a renewable, energy-efficient technology that can alleviate the global clean water shortage through seawater desalination. However, the contradiction between resistance to salinity accretion and maintaining high water evaporation properties remains a challenging bottleneck. Herein, we have developed a biomimetic multiscale-ordered hydrogel-based solar water evaporator for efficient seawater desalination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!