Objective: Kirsten rat sarcoma (K-Ras) protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted.
Methods: In the present study, we targeted the nucleotide-binding site in the "on" and "off" state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein.
Results: Interestingly, the designed compounds exhibit a binding preference for the "off" state over "on" state conformation of K-Ras protein. Moreover, the designed compounds' interactions are similar to guanosine diphosphate and, thus, could presumably act as a potential lead for K-Ras. The predicted drug-likeness properties of these compounds suggest that these compounds follow the Lipinski's rule of five and have tolerable absorption, distribution, metabolism, excretion and toxicity values.
Conclusion: Thus, through the current study, we propose targeting only "off" state conformations as a promising strategy for the design of reversible inhibitors to pharmacologically inhibit distinct conformations of K-Ras protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861002 | PMC |
http://dx.doi.org/10.2147/OTT.S99671 | DOI Listing |
Toxicol Rep
June 2025
Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt.
Doxorubicin (DOX) is a powerful antineoplastic FDA-approved anthracycline-derived antibiotic and is considered as the most suitable intervention for solid tumors and hematological cancers therapy. However, its therapeutic application is highly limited due to acute and chronic renal, hematological and testicular toxicity. Oxidative stress, lipid peroxidation and apoptosis in germ cells as well as low sperm count, motility and disturbing steroidogenesis are the principal machineries of DOX-induced testicular toxicity.
View Article and Find Full Text PDFCurr Issues Mol Biol
November 2024
Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland.
SIGLEC9 (sialic acid-binding Ig-like lectin 9) is a molecule thought to have a significant influence on the immune properties of the colorectal cancer (CRC) tumor microenvironment (TME). In our study, we assessed the expression of the SIGLEC9 protein in CRC tissue and the surgical margin tissue. Using RT-PCR, we analyzed mutations in the KRAS, NRAS, BRAF, PIK3CA, and AKT genes.
View Article and Find Full Text PDFDiscov Oncol
December 2024
Dr B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
Cancer, a leading cause of death worldwide, is projected to increase by 76.6% in new cases and 89.7% in mortality by 2050 (WHO 2022).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States.
Small GTPases (smG) are a 150-member family of proteins, comprising five subfamilies: Ras, Rho, Arf, Rab, and Ran-GTPases. These proteins function as molecular switches, toggling between two distinct nucleotide-bound states. Using traditional multidimensional heteronuclear NMR, even for single smGs, numerous experiments, high protein concentrations, expensive isotope labeling, and long analysis times are necessary.
View Article and Find Full Text PDFMolecules
November 2024
Department of Biotechnology, Universidad Politécnica de Pachuca, Zempoala 43830, Mexico.
The natural compounds PSK and PSP have antitumor and immunostimulant properties. These pharmacological benefits have been documented in vitro and in vivo, although there is no information in silico which describes the action mechanisms at the molecular level. In this study, the inverse docking method was used to identify the interactions of PSK and PSP with two local databases: BPAT with 66 antitumor proteins, and BPSIC with 138 surfaces and intracellular proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!