Objective: Kirsten rat sarcoma (K-Ras) protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted.

Methods: In the present study, we targeted the nucleotide-binding site in the "on" and "off" state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein.

Results: Interestingly, the designed compounds exhibit a binding preference for the "off" state over "on" state conformation of K-Ras protein. Moreover, the designed compounds' interactions are similar to guanosine diphosphate and, thus, could presumably act as a potential lead for K-Ras. The predicted drug-likeness properties of these compounds suggest that these compounds follow the Lipinski's rule of five and have tolerable absorption, distribution, metabolism, excretion and toxicity values.

Conclusion: Thus, through the current study, we propose targeting only "off" state conformations as a promising strategy for the design of reversible inhibitors to pharmacologically inhibit distinct conformations of K-Ras protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861002PMC
http://dx.doi.org/10.2147/OTT.S99671DOI Listing

Publication Analysis

Top Keywords

k-ras protein
20
"off" state
12
k-ras
10
virtual screening
8
combinatorial fragment-based
8
state conformations
8
conformations k-ras
8
lead k-ras
8
protein
5
guanosine
5

Similar Publications

Titanium nanostructure mitigating doxorubicin-induced testicular toxicity in rats via regulating major autophagy signaling pathways.

Toxicol Rep

June 2025

Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt.

Doxorubicin (DOX) is a powerful antineoplastic FDA-approved anthracycline-derived antibiotic and is considered as the most suitable intervention for solid tumors and hematological cancers therapy. However, its therapeutic application is highly limited due to acute and chronic renal, hematological and testicular toxicity. Oxidative stress, lipid peroxidation and apoptosis in germ cells as well as low sperm count, motility and disturbing steroidogenesis are the principal machineries of DOX-induced testicular toxicity.

View Article and Find Full Text PDF

SIGLEC9 (sialic acid-binding Ig-like lectin 9) is a molecule thought to have a significant influence on the immune properties of the colorectal cancer (CRC) tumor microenvironment (TME). In our study, we assessed the expression of the SIGLEC9 protein in CRC tissue and the surgical margin tissue. Using RT-PCR, we analyzed mutations in the KRAS, NRAS, BRAF, PIK3CA, and AKT genes.

View Article and Find Full Text PDF

Cancer, a leading cause of death worldwide, is projected to increase by 76.6% in new cases and 89.7% in mortality by 2050 (WHO 2022).

View Article and Find Full Text PDF

Exploiting F NMR in a Multiplexed Assay for Small GTPase Activity.

J Am Chem Soc

January 2025

Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States.

Small GTPases (smG) are a 150-member family of proteins, comprising five subfamilies: Ras, Rho, Arf, Rab, and Ran-GTPases. These proteins function as molecular switches, toggling between two distinct nucleotide-bound states. Using traditional multidimensional heteronuclear NMR, even for single smGs, numerous experiments, high protein concentrations, expensive isotope labeling, and long analysis times are necessary.

View Article and Find Full Text PDF

The natural compounds PSK and PSP have antitumor and immunostimulant properties. These pharmacological benefits have been documented in vitro and in vivo, although there is no information in silico which describes the action mechanisms at the molecular level. In this study, the inverse docking method was used to identify the interactions of PSK and PSP with two local databases: BPAT with 66 antitumor proteins, and BPSIC with 138 surfaces and intracellular proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!