A maternal high-fat diet (HFD) alters the offspring's feeding regulation, leading to obesity. This phenomenon is partially mediated by aberrant expression of the hypothalamic anorexigenic neuropeptide proopiomelanocortin (POMC). Nevertheless, although some individual offspring suffer from morbid obesity, others escape the malprogramming. It is suggested that this difference is due to epigenetic programming. In this study, we report that in lean offspring of non-HFD-fed dams, essential promoter regions for Pomc expression were enriched with 5-hydroxymethylcytosine (5hmC) together with a reduction in the level of 5-methylcytosine (5mC). Moreover, 5hmC was negatively correlated whereas 5mC was positively correlated with body weight in offspring from both HFD- and control-fed dams. We further found that Pomc expression in obese offspring is determined by a two-step epigenetic inhibitory mechanism in which CpG methylation is linked with histone posttranslational modifications. An increase in CpG methylation at the Poxmc promoter enables binding of methyl-binding domain 1 (MBD1) to 5mC, but not to its derivative 5hmC. MBD1 then interacts with SET domain bifurcated 1 methyltransferase to promote bimethylation on the histone 3 lysine 9 residue, reducing Pomc mRNA expression. These results suggest an epigenetic regulatory mechanism that affects obesity-prone or resilient traits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/db15-1608 | DOI Listing |
Clin Epigenetics
January 2025
Center of Oncocytogenomics, Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine of Charles University in Prague, U Nemocnice 499/2, 128 00, Prague, Czech Republic.
Background: Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment.
View Article and Find Full Text PDFResolving the molecular basis of a Mendelian condition remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion and structural variant calling and diploid de novo genome assembly. This permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility and full-length transcript information in a single long-read sequencing run.
View Article and Find Full Text PDFHGG Adv
January 2025
Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA; Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA. Electronic address:
Most genetic variants identified through genome-wide association studies (GWAS) are suspected to be regulatory in nature, but only a small fraction colocalize with expression quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, it is hypothesized but largely untested that integration of disease GWAS with context-specific eQTLs will reveal the underlying genes driving disease associations. We used colocalization and transcriptomic analyses to identify shared genetic variants and likely causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis.
View Article and Find Full Text PDFClin Chim Acta
January 2025
Department of Urology, The People's Hospital of Qingyang City/Qingyang Hospital of the Second Hospital of Lanzhou University, Qingyang 745000 China. Electronic address:
Background: Urothelial carcinoma (UC) is a common malignancy worldwide. Aberrant DNA methylation is implicated in UC carcinogenesis. This study sought to delineate the DNA methylation landscape in UC and identify DNA methylation-based biomarkers for early detection of UC.
View Article and Find Full Text PDFGene
January 2025
Department of Maternal and Child Health School of Public Health Tongji Medical College Huazhong University of Science and Technology Wuhan China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China. Electronic address:
Background: Existing epigenome-wide association study (EWAS) investigating the association between DNA methylation (DNAm) and child neurodevelopment have been predominantly conducted within Western populations, and yielded inconsistent results, leading to a significant gap within non-Western setting, particularly in resource-limited rural areas of Central China.
Objectives: To investigate the association between altered epigenome-wide DNAm and neurodevelopment in preschool children from resource-limited rural areas of Central China.
Methods: This case-control study involved 64 preschoolers.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!