Effects of coating spherical iron oxide nanoparticles.

Biochim Biophys Acta Gen Subj

IMPMC, UPMC, UMR CNRS 7590, 4 Place Jussieu, F-75005 Paris, France; University of Orleans, Orleans, France; BCMaterials, Edificio No. 500, Parque Tecnológico de Vizcaya, 48160 Derio, Spain. Electronic address:

Published: January 2017

We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed - TEM, DLS, VSM, SAXS and EXAFS - show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than the bare and citrated ones, raising the question whether the former are responsible for increasing the valence state of the oxide on the NP surfaces and lowering the overall proportion of magnetite in the particles. VSM measurements show that these two coatings lead to a slightly higher saturation magnetization than the citrate. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2016.05.016DOI Listing

Publication Analysis

Top Keywords

iron oxide
8
oxide nanoparticles
8
proportion magnetite
8
effects coating
4
coating spherical
4
spherical iron
4
nanoparticles investigate
4
investigate coatings
4
coatings applied
4
applied biomedical
4

Similar Publications

Sensitive and selective colorimetric detection of thiophanate-methyl based on a novel Ru-FeO nanozyme with enhanced peroxidase-like activity.

Mikrochim Acta

January 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.

A novel Ru-FeO nanozyme with enhanced peroxidase-like (POD-like) activity was synthesized through a hydrothermal method. Ru-FeO nanozyme was effectively utilized for the detection of thiophanate-methyl (TM) using a colorimetric technique. The POD-like activity of Ru-FeO was found to be superior compared to FeO, Rh-FeO, and Pd-FeO.

View Article and Find Full Text PDF

Iron-Based Nanomaterials for Modulating Tumor Microenvironment.

Wiley Interdiscip Rev Nanomed Nanobiotechnol

January 2025

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.

Iron-based nanomaterials (IBNMs) have been widely applied in biomedicine applications including magnetic resonance imaging, targeted drug delivery, tumor therapy, and so forth, due to their unique magnetism, excellent biocompatibility, and diverse modalities. Further research on its enormous biomedical potential is still ongoing, and its new features are constantly being tapped and demonstrated. Among them, various types of IBNMs have demonstrated significant cancer therapy capabilities by regulating the tumor microenvironment (TME).

View Article and Find Full Text PDF

Ferumoxytol-enhanced MRI of retroplacental clear space disruption in placenta accreta spectrum.

Placenta

January 2025

Department of Radiology, Baylor College of Medicine, Houston, TX, 77030, USA; The Singleton Department of Radiology, Texas Children's Hospital, Houston, TX, 77030, USA. Electronic address:

Introduction: Placenta accreta spectrum (PAS) occurs when the placenta is pathologically adherent to the myometrium. An intact retroplacental clear space (RPCS) is a marker of normal placentation. In this study, we investigate use of the FDA-approved iron supplement ferumoxytol for contrast-enhanced MRI of the RPCS in mouse models of normal pregnancy and PAS.

View Article and Find Full Text PDF

Single cell combined with laser ablation ICP-MS to study cisplatinum (IV) loaded nanoparticles penetration pathways in osteosarcoma spheroids.

Anal Chim Acta

January 2025

Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo. C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of Asturias (ISPA), Avda de Roma s/n, 33011, Oviedo, Spain. Electronic address:

Background: 3D cellular structures have been considered the following step in the evaluation of drugs penetration after 2D cultures since they are more physiologically representative in cancer cell biology. Here the penetration capabilities of Pt (IV)-loaded ultrasmall iron oxide nanoparticles in 143B osteosarcoma multicellular spheroids of different sizes is conducted by a multidimensional quantitative approach. Single cell (SC) and imaging techniques (laser ablation, LA) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) are used to visualize their penetration pathways and distribution in comparison to those of cisplatin.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

5M Biomed, LLC, Atlanta, GA, USA.

Background: Enriching and detecting Alzheimer's disease (AD) biomarkers in cerebral spinal fluid (CSF) or blood samples are increasingly applied in the AD diagnosis and monitoring of disease progression and treatment response. The accuracy of these processes is dependent on the sensitivity and specificity of capturing and quantifying AD biomarkers, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!