Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Craniofacial shape differences between taxa have often been linked to environmental adaptation, e.g., new food sources, or have been studied in the context of domestication. Evidence for the genetic basis of such phenotypic differences to date suggests that between-species as well as between-population variation has an oligogenic basis, i.e., few loci of large effect explain most of the variation. In mice, it has been shown that within-population craniofacial variation has a highly polygenic basis, but there are no data regarding the genetic basis of between-species differences in natural populations. Here, we address this question using a phenotype-focused approach. Using 3D geometric morphometrics, we phenotyped a panel of mice derived from a natural hybrid zone between Mus musculus domesticus and Mus mus musculus and quantify the transition of craniofacial shape along the hybridization gradient. We find a continuous shape transition along the hybridization gradient and unaltered developmental stability associated with hybridization. This suggests that the morphospace between the two subspecies is continuous despite reproductive isolation and strong barriers to gene flow. We show that quantitative changes in overall genome composition generate quantitative changes in craniofacial shape; this supports a highly polygenic basis for between-species craniofacial differences in the house mouse. We discuss our findings in the context of oligogenic versus polygenic models of the genetic architecture of morphological traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896993 | PMC |
http://dx.doi.org/10.1007/s00427-016-0550-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!