Chemically modified carbon-paste (CMCP) and membrane- sensors based on incorporating benzothonium-tetraphenylborate (BT-TPB) were constructed for the analysis of benzethonium chloride, and some other surfactants such as sodium lauryl ether sulphate (SLES), sodium dodecyl sulphate (SDS), and linear alkylbenzene sulphonic acid (LABSA). All sensors showed good sensitivity and reverse wide linearity over a concentration range of 5.97×10(-7) to 1.00×10(-3) and 5.96×10(-7) to 3.03×10(-3)molL(-1) with limit of detection of 3.92×10(-7)and 3.40×10(-7)molL(-1) for membrane and chemically modified carbon paste sensors, respectively, with respect to benzethonium chloride (BT.Cl). They could be used over a wide pH range of 2.0-10.0. The thermal coefficients of membrane and CMCP sensors are 5.40×10(-4), 1.17×10(-4)V/°C, respectively. The sensors indicated a wide selectivity over different inorganic cations. The effect of soaking on the surface morphology of the membrane sensor was studied using EDX-SEM and AFM techniques. The response time was <10s The freshly prepared, exhausted membrane, and CMCP sensors were successfully applied for the potentiometric determination of the pure BT.Cl solution. They were also used for the determination of its pharmaceutical formulation Dermoplast(®) antibacterial spray (20% benzocaine+0.2% benzethonium chloride) with recovery values ranging from 97.54±1.70 to 101.25±1.12 and from 96.32±2.49 to 101.23±2.15%. The second goal of these sensors is the potentiometric determination of different surfactants such as SLES, SDS, and LABSA with good recovery values using BT.Cl as a titrant in their pure forms, and in samples containing one of them (shampoo, Touri(®) dishwashing liquid, and waste water). The statistical analysis of the obtained data was studied.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2016.04.043DOI Listing

Publication Analysis

Top Keywords

chemically modified
12
benzethonium chloride
12
modified carbon
8
carbon paste
8
sensors
6
membrane
4
paste membrane
4
membrane sensors
4
sensors determination
4
determination benzethonium
4

Similar Publications

The modification effect of concentration on the correlation between ambient ozone and psoriasis: a hospital-based time-series study.

Int J Biometeorol

January 2025

Department of Disease Prevention and Control, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Changjiang Branch St, 10#, Yuzhong, Chongqing, 400042, China.

The effects of short-term ambient ozone (O) exposure on health outcomes have received growing concerns, but its effects on psoriasis is still unclear. The purpose of our study was to investigate the effects of short-term exposure to O on psoriasis, and to find out potential modifiers. A hospital-based time-series study with outpatient visit data of psoriasis was performed in Chongqing, the largest metropolitan in Southeast China.

View Article and Find Full Text PDF

Facet engineering of CuO for efficient electrochemical glucose sensing.

Anal Chim Acta

January 2025

Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, PR China. Electronic address:

Background: Accurate monitoring glucose level is significant for human health management, especially in the prevention, diagnosis, and management of diabetes. Electrochemical quantification of glucose is a convenient and rapid detection method, and the crucial aspect in achieving great sensing performance lies in the selection and design of the electrode material. Among them, CuO, with highly catalysis ability, is commonly used as electrocatalyst in non-enzymatic glucose sensing.

View Article and Find Full Text PDF

Effect of ultrasound synergistic pH shift modification treatment on Hericium erinaceus protein structure and its application in 3D printing.

Int J Biol Macromol

January 2025

School of Food science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an 710021, China; Xi' an Key Laboratory of Precision Nutrition and Functional Product Innovation, Shaanxi University of Science and Technology, Xi'an 710021, China. Electronic address:

This study investigates the effects of ultrasound synergistic pH shift modification on the structural and functional properties of Hericium erinaceus (HE) proteins. The modification resulted in significant changes in the molecular structure of HE proteins, including increased solubility (49.69 % at pH 1.

View Article and Find Full Text PDF

Cys44 of SARS-CoV-2 3CL affects its catalytic activity.

Int J Biol Macromol

January 2025

Department of Chemical Sciences, University of Naples "Federico II", Via Cintia, 21, 80126 Napoli, Italy; CEINGE Advanced Biotechnologies s.c.a r.l. "Franco Salvatore", Via Gaetano Salvatore 486, 80131 Napoli, Italy. Electronic address:

SARS-CoV-2 encodes a 3C-like protease (3CL) that is essential for viral replication. This cysteine protease cleaves viral polyproteins to release functional nonstructural proteins, making it a prime target for antiviral drug development. We investigated the inhibitory effects of halicin, a known c-Jun N-terminal kinase inhibitor, on 3CL.

View Article and Find Full Text PDF

Discovery and solution for microplastics: New risk carriers in food.

Food Chem

January 2025

Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. Electronic address:

Microplastics (MPs), as a kind of plastic particles with an equal volume size of less than 5 mm, similar to PM2.5 in the air, are causing severe contamination issues in food. Along with the food chain accumulation, they have been confirmed to appear in daily foods and cause serious health risks to the organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!