The feasibility of water monitoring by Raman spectroscopy with a portable optofluidic system for in-situ applications has been successfully demonstrated. In the proposed approach, the sample under analysis is injected into a capillary nozzle in order to produce a liquid jet that acts as an optical waveguide. This jet waveguide provides an effective strategy to excite and collect the Raman signals arising from water contaminants due to the high refractive index difference between air and water. The proposed approach avoids any necessity of liquid container or flow cell and removes any background signal coming from the sample container commonly affects Raman measurements. Furthermore, this absence is a significant advantage for in situ measurements where fouling problems can be relevant and cleaning procedures are troublesome. The extreme simplicity and efficiency of the optical scheme adopted in our approach result in highly sensitive and rapid measurements that have been performed on different representative water pollutants. The experimental results demonstrate the high potentiality of our device in water quality monitoring and analysis. In particular, nitrate and sulfate are detected below the maximum contamination level allowed for drinking water, whereas a limit of detection of 40mg/l has been found for benzene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2016.03.102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!