Progesterone is a steroid hormone that plays a central role in the female reproductive processes such as ovulation and pregnancy with possible effects on other organs as well. The measurement of progesterone levels in bodily fluids can assist in early pregnancy diagnosis and can provide insight for other reproductive functions. In this work, the detection of progesterone was examined by integrating novel aptamer development with a nanoEnhanced surface plasmon resonance imaging sensor. First, we developed X-aptamers and selected them for binding to progesterone. Then, we took advantage of the multi-array feature of SPRi to develop an optimized biosensor capable of simultaneously screening the 9 X-aptamers developed to determine the binding capabilities of each aptamer. The sensor surface design conditions were further optimized for the sandwich assay, which employed nanoEnhancers (NIR-streptavidin coated quantum dots) for ultrasensitive detection of progesterone molecules. The assay designed was examined over a concentration range of 1.575 ng/mL to 126 μg/mL resulting in a limit of detection (LOD) of 1.575 ng/mL (5 nM) in phosphate buffer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877642PMC
http://dx.doi.org/10.1038/srep26714DOI Listing

Publication Analysis

Top Keywords

detection progesterone
12
progesterone
6
nano-spri aptasensor
4
detection
4
aptasensor detection
4
progesterone buffer
4
buffer progesterone
4
progesterone steroid
4
steroid hormone
4
hormone plays
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!