Three-Dimensional Breast Cancer Models Mimic Hallmarks of Size-Induced Tumor Progression.

Cancer Res

Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania. McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.

Published: July 2016

Tumor size is strongly correlated with breast cancer metastasis and patient survival. Increased tumor size contributes to hypoxic and metabolic gradients in the solid tumor and to an aggressive tumor phenotype. Thus, it is important to develop three-dimensional (3D) breast tumor models that recapitulate size-induced microenvironmental changes and, consequently, natural tumor progression in real time without the use of artificial culture conditions or gene manipulations. Here, we developed size-controlled multicellular aggregates ("microtumors") of subtype-specific breast cancer cells by using non-adhesive polyethylene glycol dimethacrylate hydrogel microwells of defined sizes (150-600 μm). These 3D microtumor models faithfully represent size-induced microenvironmental changes, such as hypoxic gradients, cellular heterogeneity, and spatial distribution of necrotic/proliferating cells. These microtumors acquire hallmarks of tumor progression in the same cell lines within 6 days. Of note, large microtumors of hormone receptor-positive cells exhibited an aggressive phenotype characterized by collective cell migration and upregulation of mesenchymal markers at mRNA and protein level, which was not observed in small microtumors. Interestingly, triple-negative breast cancer (TNBC) cell lines did not show size-dependent upregulation of mesenchymal markers. In conclusion, size-controlled microtumor models successfully recapitulated clinically observed positive association between tumor size and aggressive phenotype in hormone receptor-positive breast cancer while maintaining clinically proven poor correlation of tumor size with aggressive phenotype in TNBC. Such clinically relevant 3D models generated under controlled experimental conditions can serve as precise preclinical models to study mechanisms involved in breast tumor progression as well as antitumor drug effects as a function of tumor progression. Cancer Res; 76(13); 3732-43. ©2016 AACR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947371PMC
http://dx.doi.org/10.1158/0008-5472.CAN-15-2304DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
tumor progression
20
tumor size
16
tumor
12
aggressive phenotype
12
three-dimensional breast
8
breast tumor
8
size-induced microenvironmental
8
microenvironmental changes
8
microtumor models
8

Similar Publications

Air pollution and breast cancer risk: a Mendelian randomization study.

Int J Environ Health Res

January 2025

Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

Previous research yields inconsistent findings on the association between air pollution and breast cancer risk, with no definitive causal relationship established. To address this, we conducted a two-sample Mendelian randomization study on data from the IEU open GWAS databases and the Breast Cancer Association Consortium to explore the potential link between air pollution (including PM, PM absorbance, PM, PM, NO, and NO) and breast cancer risk. We found that PM (odds ratio (OR) = 1.

View Article and Find Full Text PDF

Apatinib and trastuzumab-based chemotherapy for heavily treated primary trastuzumab-resistant metastatic breast cancer.

J Cancer Res Ther

December 2024

Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, People's Republic of China.

Background: The low incidence and poor prognosis primary trastuzumab resistance (PTR) in HER2-positive breast cancer has limited research into possible treatments. Thus, it remains unclear whether this group of patients could benefit from nontargeting HER2 antiangiogenic therapy.

Patients And Methods: We collected the medical data for HER2-positive patients with PTR who received apatinib 250 mg and trastuzumab-based chemotherapy (ATBC) between March 18, 2017, and March 31, 2022.

View Article and Find Full Text PDF

Tumor-infiltrating lymphocytes (TILs) are key components of the tumor microenvironment (TME) and serve as prognostic markers for breast cancer. Patients with high TIL infiltration generally experience better clinical outcomes and extended survival compared to those with low TIL infiltration. However, as the TME is highly complex and TIL subtypes perform distinct biological functions, TILs may only provide an approximate indication of tumor immune status, potentially leading to biased prognostic results.

View Article and Find Full Text PDF

Reconfiguring Priorities: Breastfeeding Decision-making Among Young Breast Cancer Survivors.

Cancer Nurs

January 2025

Author Affiliations: Department Research, Hospital Germans Trias i Pujol, Universitat Autonòma de Barcelona; and NURECARE Research Group, Institut d'Investigació i Hospital Germans Trias i Pujol (IGTP), Ctra de Can Ruti, Camí de les Escoles (Dr Huertas-Zurriaga); Department Research, Institut Català Oncologia-Hospital Germans Trias i Pujol; Universitat Autonòma de Barcelona; GRIN Group, IDIBELL, Institute of Biomedical Research; and NURECARE Research Group, IGTP, Ctra de Can Ruti, Camí de les Escoles (Dr Cabrera-Jaime); Tecnocampus University and NURECARE Research Group, IGTP, Ctra de Can Ruti, Camí de les Escoles (Dr Navarri); Oncology Department, Hereditarian Cancer Program, Institut Català Oncologia-Hospital Germans Trias i Pujol, B-ARGO (Badalona Applied Research Group in Oncology), IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona (Dr Teruel-Garcia); and Nursing Research Group in Vulnerability and Health (GRIVIS); and Nursing Department, Faculty of Medicine, Universitat Autònoma de Barcelona (Dr Leyva-Moral), Badalona, Spain.

Background: Breast cancer survivors face unique challenges in breastfeeding decisions. Limited research exists on the experiences and decision-making processes of young women with breast cancer regarding breastfeeding.

Objective: To explain the decision-making processes of young women with breast cancer in relation to breastfeeding throughout the cancer trajectory.

View Article and Find Full Text PDF

Purpose: Mammary carcinoma is comprised heterogeneous groups of cells with different metastatic potential. 4T1 mammary carcinoma cells metastasized to heart (4THM), liver (4TLM) and brain (4TBM) and demonstrate cancer-stem cell phenotype. Using these cancer cells we found thatTGF-β is the top upstream regulator of metastatic process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!