Photocatalytic degradation of an emerging pollutant by TiO-coated glass rings: a kinetic study.

Environ Sci Pollut Res Int

Instituto de Desarrollo Tecnológico para la Industria Química, Universidad Nacional del Litoral and Consejo Nacional de Investigaciones Científicas y Técnicas, Güemes 3450, 3000, Santa Fe, Argentina.

Published: March 2017

AI Article Synopsis

  • This study examines how effectively clofibric acid, a pharmaceutical drug, breaks down using TiO-coated glass rings in a fixed-bed reactor when exposed to UV light.
  • A new kinetic model was created to explain this degradation process, focusing on how well the surface absorbs UV radiation through a concept known as local surface rate of photon absorption (LSRPA).
  • The Monte Carlo method was used to analyze how photons interact with the coated rings, and the model's predictions closely matched experimental results from tests with varying catalyst coatings and radiation levels.

Article Abstract

This work presents the photocatalytic degradation of the pharmaceutical drug clofibric acid in a fixed-bed reactor filled with TiO-coated glass rings. Experiments were carried out under UV radiation. A kinetic model that takes into account radiation absorption by means of the local surface rate of photon absorption (LSRPA) has been developed. The LSRPA was obtained from the results of a radiation model. The Monte Carlo method was employed to solve the radiation model, where the interaction between photons and TiO-coated rings was considered. Data from experiments carried out with rings with different numbers of catalyst coatings and different irradiation levels were used to estimate the parameters of the kinetic model. A satisfactory agreement was obtained between model simulations and experimental results.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-016-6855-2DOI Listing

Publication Analysis

Top Keywords

photocatalytic degradation
8
tio-coated glass
8
glass rings
8
experiments carried
8
kinetic model
8
radiation model
8
model
5
degradation emerging
4
emerging pollutant
4
pollutant tio-coated
4

Similar Publications

A Simple One-Pot Method for the Synthesis of BiFeO/BiFeO Heterojunction for High-Performance Photocatalytic Degradation Applications.

Int J Mol Sci

December 2024

Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.

This study presents a facile one-pot synthesis method to fabricate BiFeO-BiFeO-BiO heterojunction photocatalysts with controllable compositions and pure phases. Three different binary heterojunctions (BiFeO/BiFeO, BiFeO/BiO, and BiFeO/BiO) and a ternary BiFeO/BiFeO/BiO heterojunction were formed, all exhibiting significantly enhanced photocatalytic performance for the degradation of methylene blue (MB) and phenol under visible light irradiation, outperforming the individual compositions. Notably, the BiFeO/BiFeO heterojunction achieved the highest degradation efficiency (93.

View Article and Find Full Text PDF

The development of efficient and sustainable photocatalysts for wastewater treatment remains a critical challenge in environmental remediation. In this study, a ternary photocatalyst, Cu-CuO/g-CN, was synthesized by embedding copper-copper oxide heterostructural nanocrystals onto g-CN nanosheets via a simple deposition method. Structural and optical characterization confirmed the successful formation of the heterostructure, which combines the narrow bandgap of CuO, the high stability of g-CN, and the surface plasmon resonance (SPR) effect of Cu nanoparticles.

View Article and Find Full Text PDF

Mimicking Axon Growth and Pruning by Photocatalytic Growth and Chemical Dissolution of Gold on Titanium Dioxide Patterns.

Molecules

December 2024

Chair for Integrated Systems and Photonics, Department of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany.

Biological neural circuits are based on the interplay of excitatory and inhibitory events to achieve functionality. Axons form long-range information highways in neural circuits. Axon pruning, i.

View Article and Find Full Text PDF

Poly(Acrylic Acid)/TiO Nanocomposite Hydrogels for Paper Artwork Cleaning and Protection.

Molecules

December 2024

Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy.

Paper-based artworks are prone to natural aging processes driven by chemical and biological processes. Numerous treatments have been developed to mitigate deterioration and prevent irreversible damage. In this study, we investigated the use of poly(acrylic acid)/TiO composite hydrogels, combining their cleaning and protective functions in a minimally invasive treatment.

View Article and Find Full Text PDF

Room temperature synthesis of one-dimensional hierarchical hollow BiOBr with tunable photocatalysis reaction pathway for RhB under visible light.

Environ Res

January 2025

Jiangxi Province Key Laboratory of Surface Engineering,Jiangxi Science & Technology Normal University, Nanchang 330013, PR China; School of Materials and Energy, Jiangxi Science & Technology Normal University, Nanchang 330013, P. R. China. Electronic address:

One-dimensional (1D) hierarchical photocatalyst has the advantages of 1D materials and hierarchical materials, which is a kind of potential high performance photocatalytic materials. However, how to efficiently synthesize 1D hierarchical BiOBr is still a huge challenge. Herein, 1D rod-like BiO(OH)(NO)·3HO, the hydrolysis product of Bi(NO)·5HO, was acted as both the template and Bi source to synthesize 1D hierarchical hollow BiOBr (1DHHBr) through a facile solution stirring method at room temperature, using KBr as Br source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!