Synthesis of both enantiomers of crambescin B carboxylic acid is described. A cis-enyne starting material was epoxidized under the conditions of Katsuki asymmetric epoxidation to give 95% ee of the epoxide, which was transformed to crambescin B carboxylic acid via bromocation-triggered cascade cyclization as the key step. Enantiomerically pure crambescin A and C carboxylic acids were also synthesized from the product of the cascade reaction. Structure-activity relationship (SAR) studies against voltage-gated sodium channel (VGSC) inhibition using those synthetic compounds revealed that the natural enantiomer of crambescin B carboxylic acid was most active and comparable to tetrodotoxin, and the unalkylated cyclic guanidinium structure is indispensible, while the carboxylate moiety is not important. The absolute stereochemistry of crambescin A was determined by a comparison of the methyl ester derived from natural crambescin A with that derived from the stereochemically defined crambescin A carboxylic acid synthesized in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6ob00914jDOI Listing

Publication Analysis

Top Keywords

crambescin carboxylic
20
carboxylic acid
16
crambescin
8
carboxylic acids
8
voltage-gated sodium
8
carboxylic
6
asymmetric synthesis
4
synthesis crambescin
4
crambescin a-c
4
a-c carboxylic
4

Similar Publications

Syntheses of guanidino alkaloids (-)-monanchoradin A and (-)-crambescin A2 392 are described. The key feature of the syntheses is the cyclization-carbonylation-cyclization cascade of the optically active propargyl guanidine. The bicyclic guanidino cores bearing an asymmetric center and ester or carboxylic acid functionality were constructed in a single step.

View Article and Find Full Text PDF

Isolation of marine compounds from living invertebrates represents a major challenge for sustainable and environmentally friendly exploitation of marine bio-resources. To develop innovative technology to trap invertebrate compounds in the open sea, the proof of concept of a system combining external continuous circulation of water with XAD-amberlite solid-phase extraction was validated in an aquarium. In this work, we reported the elicitation of guanidine alkaloid production of in the presence of , both collected from the Mediterranean Sea.

View Article and Find Full Text PDF

Crambescin B carboxylic acid, a synthetic analog of crambescin B, was recently found to inhibit the voltage-sensitive sodium channels (VSSC) in a cell-based assay using neuroblastoma Neuro 2A cells. In the present study, whole-cell patch-clamp recordings were conducted with three heterologously expressed VSSC subtypes, Na1.2, Na1.

View Article and Find Full Text PDF

Synthesis of both enantiomers of crambescin B carboxylic acid is described. A cis-enyne starting material was epoxidized under the conditions of Katsuki asymmetric epoxidation to give 95% ee of the epoxide, which was transformed to crambescin B carboxylic acid via bromocation-triggered cascade cyclization as the key step. Enantiomerically pure crambescin A and C carboxylic acids were also synthesized from the product of the cascade reaction.

View Article and Find Full Text PDF

The stereocontrolled synthesis of a racemic carboxylic acid of crambescin B, a marine alkaloid, is described. The synthesis features two highly stereoselective reactions: (I) palladium-catalyzed hydroxymethylation of an alkynyl aziridine having an N-guanidino group and (II) cascade bromocyclization providing a spiro-hemiaminal structure. The cell-based colorimetric assay showed that the synthesized carboxylic acid exhibited a potent inhibitory activity on voltage-gated sodium channels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!