Background: Penetration attempts of the hemibiotroph Colletotrichum graminicola may activate PAMP-triggered immunity (PTI) on different cultivars of Zea mays to different extent. However, in most events, this does not prevent the establishment of a compatible pathogenic interaction. In this study, we investigate the extent to which the host variety influences PTI. Furthermore, we assess whether visual disease symptoms occurring on different maize varieties reliably reflect fungal biomass development in planta as determined by qPCR and GFP tracing.
Results: Employing a set of four maize varieties, which were selected from a panel of 27 varieties, for in-depth assessment of pathogenesis of the wild type strain of C. graminicola, revealed considerable differences in susceptibility as evidenced by symptom severity that decreased from variety Golden Jubilee to Mikado to Farmtop to B73. However, a newly developed qPCR assay and microscopical observation of a GFP-labelled strain showed that disease symptoms are in some instances inconsistent when compared with other indicators of susceptibility. Of the four varieties assessed, either Golden Jubilee, Mikado and B73, or Golden Jubilee, Farmtop and B73 showed a direct correlation between symptom and fungal biomass development. In a pairwise comparison, however, Mikado and Farmtop showed an inverse correlation for these features.
Conclusions: The genotype of maize contributes to the severity of symptoms resulting from an infection with C. graminicola. Partially, this may be attributed to the extent of PTI activated in different varieties, as reflected by papilla formation. Furthermore, when evaluating the susceptibility of a variety, it should be considered that symptom severity must not have to reflect the extent of fungal growth in the infected tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877754 | PMC |
http://dx.doi.org/10.1186/s12866-016-0709-4 | DOI Listing |
Bioengineered
December 2025
Department of Translational Medical Bioengineering, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine.
This article presents new data on the integrated use of colloidal solutions of nanoparticles and low-intensity laser radiation on the biosynthetic activity of the medicinal mushroom . Traditional mycological methods, colloidal solutions of biogenic metals, and unique photobiological methods have also been used. It was found that colloidal solutions of nanoparticles of all metals used increased the growth characteristics of (55-60%), while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of mycelia by 12.
View Article and Find Full Text PDFPeerJ
January 2025
College of Agronomy, Guizhou University, Guiyang, Guizhou, China.
Background: is an important cash crop in southwestern China, with soil organic carbon playing a vital role in soil fertility, and microorganisms contributing significantly to nutrient cycling, thus both of them influencing tea tree growth and development. However, existing studies primarily focus on soil organic carbon, neglecting carbon fractions, and the relationship between soil organic carbon fractions and microbial communities is unclear. Consequently, this study aims to clarify the impact of different tea planting durations on soil organic carbon fractions and microbial communities and identify the main factors influencing microbial communities.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Food Technology, College of Agriculture Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
Arsenic (As) contamination in groundwater has become a global concern, and it poses a serious threat to the health of millions of people. Groundwater with high As concentrations has been reported worldwide. It is widely recognized that the toxicity of As largely depends on its chemical forms, making As speciation a critical issue.
View Article and Find Full Text PDFPharm Nanotechnol
January 2025
Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States of America.
Metallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs).
View Article and Find Full Text PDFMicrobiome
January 2025
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
Background: Microbial spoilage in meat impedes the development of sustainable food systems. However, our understanding of the origin of spoilage microbes is limited. Here, we describe a detailed longitudinal study that assesses the microbial dynamics in a meat processing facility using high-throughput culture-dependent and culture-independent approaches to reveal the diversity, dispersal, persistence, and biofilm formation of spoilage-associated microbes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!