Synthetic Strategies for 5- and 6-Membered Ring Azaheterocycles Facilitated by Iminyl Radicals.

Molecules

University of St. Andrews, EaStCHEM School of Chemistry, St. Andrews, Fife KY16 9ST, UK.

Published: May 2016

The totality of chemical space is so immense that only a small fraction can ever be explored. Computational searching has indicated that bioactivity is associated with a comparatively small number of ring-containing structures. Pyrrole, indole, pyridine, quinoline, quinazoline and related 6-membered ring-containing aza-arenes figure prominently. This review focuses on the search for fast, efficient and environmentally friendly preparative methods for these rings with specific emphasis on iminyl radical-mediated procedures. Oxime derivatives, particularly oxime esters and oxime ethers, are attractive precursors for these radicals. Their use is described in conventional thermolytic, microwave-assisted and UV-vis based preparative procedures. Photoredox-catalyzed protocols involving designer oxime ethers are also covered. Choice can be made amongst these synthetic strategies for a wide variety of 5- and 6-membered ring heterocycles including phenanthridine and related aza-arenes. Applications to selected natural products and bioactive molecules, including trispheridine, vasconine, luotonin A and rutaecarpine, are included.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6273063PMC
http://dx.doi.org/10.3390/molecules21050660DOI Listing

Publication Analysis

Top Keywords

synthetic strategies
8
6-membered ring
8
oxime ethers
8
strategies 6-membered
4
ring azaheterocycles
4
azaheterocycles facilitated
4
facilitated iminyl
4
iminyl radicals
4
radicals totality
4
totality chemical
4

Similar Publications

Advanced metabolic Engineering strategies for the sustainable production of free fatty acids and their derivatives using yeast.

J Biol Eng

December 2024

Department of Chemical Engineering (BK21 FOUR Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.

The biological production of lipids presents a sustainable method for generating fuels and chemicals. Recognized as safe and enhanced by advanced synthetic biology and metabolic engineering tools, yeasts are becoming versatile hosts for industrial applications. However, lipids accumulate predominantly as triacylglycerides in yeasts, which are suboptimal for industrial uses.

View Article and Find Full Text PDF

Transgenic tomato strategies targeting whitefly eggs from apoplastic or ovary-directed proteins.

BMC Plant Biol

December 2024

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.

Background: Transgenic plants expressing proteins that target the eggs of the ubiquitous plant pest Bemisia tabaci (whitefly) could be an effective insecticide strategy. Two approaches for protein delivery are assessed using the mCherry reporter gene in transgenic tomato plants, while accommodating autofluorescence in both the plant, phloem-feeding whitefly and pedicle-attached eggs.

Results: Both transgenic strategies were segregated to homozygous genotype using digital PCR.

View Article and Find Full Text PDF

Coal gangue (CG) is an industrial solid waste produced by coal mining and separation that is considered to have a significant effect on the soil or water environment when exposed to the air, exacerbating ecological pollution. The comprehensive utilization of CG has always been a difficult problem due to the complex mineralogical characteristics. Producing concrete aggregates with CG is an effective strategy for utilising CG resources synthetically.

View Article and Find Full Text PDF

Escalation of intravenous fentanyl self-administration and assessment of withdrawal behavior in male and female mice.

Psychopharmacology (Berl)

December 2024

Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47904, USA.

Rationale: The rise in overdose deaths from synthetic opioids, especially fentanyl, necessitates the development of preclinical models to study fentanyl use disorder (FUD). While there has been progress with rodent models, additional translationally relevant models are needed to examine excessive fentanyl intake and withdrawal signs.

Objective: The current study aimed to develop a translationally relevant preclinical mouse model of FUD by employing chronic intravenous fentanyl self-administration (IVSA).

View Article and Find Full Text PDF

Turning cold into hot: emerging strategies to fire up the tumor microenvironment.

Trends Cancer

December 2024

National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China. Electronic address:

The tumor microenvironment (TME) is a complex, highly structured, and dynamic ecosystem that plays a pivotal role in the progression of both primary and metastatic tumors. Precise assessment of the dynamic spatiotemporal features of the TME is crucial for understanding cancer evolution and designing effective therapeutic strategies. Cancer is increasingly recognized as a systemic disease, influenced not only by the TME, but also by a multitude of systemic factors, including whole-body metabolism, gut microbiome, endocrine signaling, and circadian rhythm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!