Two donor-acceptor-acceptor (D-A-A)-type molecules incorporating nitrobenzoxadiazole (NBO) as the A-A block and ditolylamine as the D block bridged through a phenylene (PNBO) and a thiophene (TNBO) spacer were synthesized in a one-step coupling reaction. Their electronic, photophysical, and thermal properties; crystallographic analysis; and theoretical calculations were studied to establish a clear structure-property relationship. The results indicate that the quinoidal character of the thiophene bridge strongly governs the structural features and crystal packings (herringbone vs. brickwork) and thus the physical properties of the compounds. PNBO and TNBO were utilized as electron donors combined with C70 as the electron acceptor in the active layer of vacuum-processed bulk heterojunction small-molecule organic solar cells (SMOSCs). The power conversion efficiency of both PNBO- and TNBO-based OSCs exceeded 5 %. The ease of accessibility of PNBO and TNBO demonstrates the potential for simple and economical synthesis of electron donors in vacuum-processed SMOSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201600361 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Sichuan University, School of Chemical Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA.
Covalent organic frameworks (COFs) are often employed in oxygen reduction reactions (ORR) for hydrogen peroxide production due to their tunable structures and compositions. However, COF electrocatalysts require precise structural engineering, such as heteroatoms or metal site doping, to modulate the reaction pathway during the ORR process. In this work, we designed a tetraphenyl-p-phenylenediamine based COF electrocatalyst, namely TPDA-BDA, which exhibited excellent two-electron (2e) ORR performance with high H2O2 selectivity of 89.
View Article and Find Full Text PDFChemphyschem
January 2025
Utah State University, Department of Chemistry and Biochemistry, 0300 Old Main Hill, 84322-0300, Logan, UNITED STATES OF AMERICA.
A halobenzene molecule contains several sites that are capable of acting in an electron-donating capacity within a H-bond. One set of such sites comprise the lone electron pairs of the halogen (X) atoms on the periphery of the ring. The π-electron system above the ring plane can also fulfill this function in many cases.
View Article and Find Full Text PDFmSystems
January 2025
Department of Chemical and P. Engineering, Research and Innovation Centre on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.
A comprehensive optimization of known prokaryotic autotrophic carbon dioxide (CO) fixation pathways is presented that evaluates all their possible variants under different environmental conditions. This was achieved through a computational methodology recently developed that considers the trade-offs between energy efficiency (yield) and growth rate, allowing us to evaluate candidate metabolic modifications for microbial conversions. The results revealed the superior configurations in terms of both yield (efficiency) and rate (driving force).
View Article and Find Full Text PDFChemistry
January 2025
National & Kapodistrian University of Athens, Chemistry, Panepistimiopolis, Zografou, 15771, Athens, GREECE.
The prominence of binuclear catalysts underlines the need for the design and development of diverse bifunctional ligand frameworks that exhibit tunable electronic and structural properties. Such strategies enable metal-metal and ligand-metal cooperation towards catalytic applications, improve catalytic activity, and are essential for advancing multi-electron transfers for catalytic application. Hereby, we present the synthesis, crystal structure, and photocatalytic properties of a binuclear Ni(II) complex, [Ni2(1,10-phenanthroline)2(2-sulfidophenolate)2] (1), which crystallizes in the centrosymmetric triclinic system (P-1) showing extensive intra- and inter- non-coordinated interactions.
View Article and Find Full Text PDFChemSusChem
January 2025
Universita degli Studi di Ferrara, Dipartimento di Scienze Chimiche e Farmaceutiche, Via Borsari 46, 44121, Ferrara, ITALY.
Direct photochemical conversion of CO2 into a single carbon-based product currently represents one of the major issues in the catalysis of the CO2 reduction reaction (CO2RR). In this work, we demonstrate that the combination of an organic photosensitizer with a heptacoordinated iron(II) complex allows to attain a noble-metal-free photochemical system capable of efficient and selective conversion of CO2 into CO upon light irradiation in the presence of N,N-diisopropylethylamine (DIPEA) and 2,2,2-trifluoroethanol (TFE) as the electron and proton donor, respectively, with unprecedented performances (ΦCO up to 36%, TONCO > 1000, selectivity > 99%). As shown by transient absorption spectroscopy studies, this can be achieved thanks to the fast rates associated with the electron transfer from the photogenerated reduced dye to the catalyst, which protect the dye from parallel degradation pathways ensuring its stability along the photochemical reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!