Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells.

Neural Regen Res

Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China.

Published: April 2016

Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus. This indicates that the denervated hippocampus provides an environment for neuronal differentiation of neural stem cells. However, the pathways and mechanisms in this process are still unclear. Seven days after fimbria fornix transection, our reverse transcription polymerase chain reaction, western blot assay, and enzyme linked immunosorbent assay results show a significant increase in ciliary neurotrophic factor mRNA and protein expression in the denervated hippocampus. Moreover, neural stem cells derived from hippocampi of fetal (embryonic day 17) Sprague-Dawley rats were treated with ciliary neurotrophic factor for 7 days, with an increased number of microtubule associated protein-2-positive cells and decreased number of glial fibrillary acidic protein-positive cells detected. Our results show that ciliary neurotrophic factor expression is up-regulated in the denervated hippocampus, which may promote neuronal differentiation of neural stem cells in the denervated hippocampus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4870916PMC
http://dx.doi.org/10.4103/1673-5374.180744DOI Listing

Publication Analysis

Top Keywords

denervated hippocampus
20
neural stem
20
stem cells
20
neuronal differentiation
12
ciliary neurotrophic
12
neurotrophic factor
12
endogenous neural
8
differentiation neural
8
cells
7
denervated
5

Similar Publications

Complement C5a protein has been shown to play a major role in tissue regeneration through interaction with its receptor (C5aR) on target cells. Expression of this receptor has been reported in the nervous system which, upon injury, has no treatment to restore the lost functions. This work aimed at investigating the Complement C5a effect on axonal growth after axotomy in vitro.

View Article and Find Full Text PDF

Background: Gut microbiota dysbiosis is closely associated with psychiatric disorders such as depression and anxiety (DA). In our preliminary study, fecal microbiota transplantation from volunteers with psychological stress and subclinical symptoms of depression (Vsd) induced DA-like behaviors in mice. Escherichia fergusonii (Esf) was found to be more abundant in the feces of Vsd compared to healthy volunteers.

View Article and Find Full Text PDF

The vagus nerve regulates metabolic homeostasis and mediates gut-brain communication. We hypothesized that vagus nerve dysfunction, induced by truncated vagotomy (VGX) or carotid artery occlusion (AO), would disrupt gut-brain communication and exacerbate metabolic dysregulation, neuroinflammation, and cognitive impairment. This study aimed to test the hypothesis in gerbils fed a high-fat diet.

View Article and Find Full Text PDF

Alleviating effect of vagus nerve cutting in Salmonella-induced gut infections and anxiety-like behavior via enhancing microbiota-derived GABA.

Brain Behav Immun

July 2024

Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, China; Shaanxi Precision Nutrition and Health Research Institute, Xi'an, Shaanxi, China. Electronic address:

The vagus nerve, a pivotal link within the gut-brain axis, plays a critical role in maintaining homeostasis and mediating communication between the gastrointestinal tract and the brain. It has been reported that gastrointestinal infection by Salmonella typhimurium (S. typhimurium) triggers gut inflammation and manifests as anxiety-like behaviors, yet the mechanistic involvement of the vagus nerve remains to be elucidated.

View Article and Find Full Text PDF

Although brain cholinergic denervation has been largely associated with cognitive decline in patients with Parkinson's disease (PD), new evidence suggests that cholinergic upregulation occurs in the hippocampus of PD patients without cognitive deficits. The specific hippocampal sectors and potential mechanisms of this cholinergic compensatory process have been further studied here, using MRI volumetry and morphometry coupled with molecular imaging using the PET radiotracer [F]-Fluoroethoxybenzovesamicol ([F]-FEOBV). Following a thorough screening procedure, 18 participants were selected and evenly distributed in three groups, including cognitively normal PD patients (PD-CN), PD patients with mild cognitive impairment (PD-MCI), and healthy volunteers (HV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!