Biochar particles have been hypothesized to provide unique microhabitats for a portion of the soil microbial community, but few studies have systematically compared biochar communities to bulk soil communities. Here, we used a combination of sequencing techniques to assess the taxonomic and functional characteristics of microbial communities in four-year-old biochar particles and in adjacent soils across three forest environments. Though effects varied between sites, the microbial community living in and around the biochar particles had significantly lower prokaryotic diversity and higher eukaryotic diversity than the surrounding soil. In particular, the biochar bacterial community had proportionally lower abundance of Acidobacteria, Planctomycetes, and β-Proteobacteria taxa, compared to the soil, while the eukaryotic biochar community had an 11% higher contribution of protists belonging to the Aveolata superphylum. Additionally, we were unable to detect a consistent biochar effect on the genetic functional potential of these microbial communities for the subset of the genetic data for which we were able to assign functions through MG-RAST. Overall, these results show that while biochar particles did select for a unique subset of the biota found in adjacent soils, effects on the microbial genetic functional potential appeared to be specific to contrasting forest soil environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4876420PMC
http://dx.doi.org/10.1038/srep26425DOI Listing

Publication Analysis

Top Keywords

biochar particles
16
biochar
8
microbial community
8
microbial communities
8
adjacent soils
8
genetic functional
8
functional potential
8
soil
5
microbial
5
microbiomes metagenomes
4

Similar Publications

Rethinking the biochar impact on the anaerobic digestion of food waste in bench-scale digester: Spatial distribution and biogas production.

Bioresour Technol

January 2025

Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.

The improvement of biogas production in anaerobic digestion (AD) by biochar introduction has been demonstrated. However, the distribution of biochar in the digester and its effect on AD have been seldom explored. In this study, the distribution of biochar and their impact on AD were investigated in a 30 L semi-continuously operated bench-scale anaerobic digester.

View Article and Find Full Text PDF

This work develops Fe-Ni particles loaded on biochar (Fe-Ni/BC) to remove U(VI) efficiently. Fe-Ni bimetallic particles loaded on biochar (BC) can improve stability and reactivity, and the mesoporous structure of BC can effectively reduce Fe aggregation. The removal ability of Fe-Ni/BC is higher than that of Fe-Ni, BC, and Fe/BC.

View Article and Find Full Text PDF

New efficient and sustainable methods for the removal of malachite green (MG) from environmental media are needed. In this study, corn straw was co-pyrolyzed with montmorillonite under a variety of conditions (400, 500, 600, and 700 °C and 10-40 wt% montmorillonite), without any use of toxic chemicals, to produce a series of biochar-clay composites. Characteristics of the composites that make them promising contaminant sorbents include a uniform lamellar-particle micromorphology, enhanced mesoporous structure and surface area (53.

View Article and Find Full Text PDF

In the current work, three adsorbent materials were developed: biochar derived from date palm fiber (C), date palm fiber biochar/chitosan nanoparticles (CCS), and biochar/chitosan nanoparticle composite supplemented with glutamine (CCSG). These compounds were used as solid adsorbents to remove As from polluted water. Several characterization approaches were used to investigate all the synthesized solid adsorbents, including thermogravimetric analysis, N adsorption/desorption isotherm, scanning electron microscopy, transmission electron microscopy (TEM), attenuated total reflectance with Fourier transform infrared, and zeta potential.

View Article and Find Full Text PDF

Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!