A tetracoordinated redox couple, made by [Cu(2-mesityl-4,7-dimethyl-1,10-phenanthroline)2][PF6], 1, and its Cu(II) form [Cu(2-mesityl-4,7-dimethyl-1,10-phenanthroline)2][PF6]2, 2, has been synthesized, and its electrochemical and photochemical features have been investigated and compared with those of a previously published Cu(2+)/Cu(+) redox shuttle, namely, [Cu(2,9-dimethyl-1,10-phenanthroline)2][PF6], 3, and its pentacoordinated oxidized form [Cu(2,9-dimethyl-1,10-phenanthroline)2Cl][PF6], 4. The detrimental effect of the fifth Cl(-) ancillary ligand on the charge transfer kinetics of the redox shuttles has been exhaustively demonstrated. Appropriately balanced Cu-based electrolytes have been then formulated and tested in dye solar cells in combination with a π-extended benzothiadiazole dye. The bis-phenanthroline Cu-complexes, 1 and 2, have been found to provide an overall 4.4% solar energy conversion efficiency, which is more than twice that of the literature benchmark couple, 3 and 4, employing a Cl-coordinated oxidized species and even comparable with the performances of a I(-)/I3(-) electrolyte of analogous concentration. A fast counter-electrode reaction, due to the excellent electrochemical reversibility of 2, and a high electron collection efficiency, allowed through the efficient dye regeneration kinetics exerted by 1, represents two major characteristics of these copper-based electron mediators and may constitute a pivotal step toward the development of a next generation of copper-based efficient iodine-free redox shuttles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.6b00204DOI Listing

Publication Analysis

Top Keywords

dye solar
8
solar cells
8
redox shuttles
8
redox
5
tetracoordinated bis-phenanthroline
4
bis-phenanthroline copper-complex
4
copper-complex couple
4
couple efficient
4
efficient redox
4
redox mediators
4

Similar Publications

This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.

View Article and Find Full Text PDF

Perovskite solar cell (PSC) technology holds great promise with continuously improving power conversion efficiency; however, the use of metal electrodes hinders its commercialization and the development of tandem designs. Although single-walled carbon nanotubes (SWCNTs), as one-dimensional materials, have the potential to replace metal electrodes in PSCs, their poor conductivity still limits their application. In this study, the near-infrared (NIR)-absorbing anionic heptamethine cyanine dye-doped SWCNTs functioned in a dual role as an efficient charge-selective layer and electrode in PSCs.

View Article and Find Full Text PDF

Efficient CO Electrocarboxylation Using Dye-Sensitized Photovoltaics.

Molecules

December 2024

School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.

This paper presents the solar-driven electrocarboxylation of 2-bromopyridine (2-BP) with CO into high-value-added chemicals 2-picolinic acid (2-PA) using dye-sensitized photovoltaics under simulated sunlight. Using three series-connected photovoltaic modules and an Ag electrode with excellent catalytic performance, a Faraday efficiency () of 33.3% is obtained for 2-PA under mild conditions.

View Article and Find Full Text PDF

Thermal decomposition synthesis of CuO on TiO NTs as promising photocatalysts for effective photoelectrocatalytic hydrogen evolution and pollutant removal.

Environ Res

January 2025

College of Civil Engineering, Hefei University of Technology, Hefei, 238000, China; Chinaland Solar Energy Co., Ltd., Hefei, 238000, China. Electronic address:

The preparation strategy is the important factor to obtain the effective photocatalyst, and the thermal decomposition could be used to prepare photocatalysts with high crystallinity and photoactivity. In this paper, thermal decomposition method was used to deposit CuO nanoparticles on TiO nanotube arrays (TiO NTs), and the TiO NTs/CuO exhibited remarkably high visible light absorption and photoelectrocatalytic performances toward dye degradation and Cr(VI) reduction. The potential degradation pathway and toxicities of rhodamine B (RhB) dyes and intermediates were investigated.

View Article and Find Full Text PDF

Ni-Co doped TiO catalyst for efficient photocatalytic degradation of Malachite Green under UV and direct sunlight.

Environ Sci Pollut Res Int

January 2025

Materials and Process Development Laboratory, Department of Chemical Engineering, Birla Institute of Technology and Science, K. K. Birla Goa Campus, Pilani, Goa, 403726, India.

In the present study, combustion-synthesized TiO nanoparticles were wet impregnated with Ni, Co, and Ni-Co, respectively. The photocatalytic performance of synthesized catalysts was evaluated against Malachite Green dye. The synthesized materials were characterized for crystallite size, surface morphology, elemental composition, and band gap using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and ultra-violet diffused reflectance spectroscopy, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!